Skip to main content
Log in

Polyester Yarns Reinforced by Nanoclays

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

In the present study, poly(ethylene terephthalate)-clay nanocomposite multifilament yarns were prepared using two commercial and four nanoclays synthesized from Reşadiye Na-montmorillonite (Na-MMT). Two type multifilament yarns, i.e., fully drawn yarn (FDY) and partially oriented yarn (POY), were melt spun. The FDY yarns were prepared using pilot type Buschaert SpinBoy II CC melt spinning machine with a masterbatch feeding ratio of 4–5% in order to meet industrial machine requirements. The POY spinning was made on the Barmag industrial machine, and the POY yarn was subsequently texturized. All multifilament yarns were prepared via the masterbatch approach, similarly used for the preparation of colored dope dyed yarns. The mechanical properties, flame retardancy, thermal stability, and morphology of produced yarns on melt spinning experiments were analyzed and discussed along with the effect of nanoclay properties such as thermal stability, polymer-clay compatibility, and particle size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. J. East, Polyester Fibers, in Synthic Fibers: Nylon, Polyesters, Acrylic, Polyolefin, Ed. by J. E. McIntyre (Woodhead Publ., Cambridge, 2005), pp. 95–167.

    Google Scholar 

  2. E. M. Aizenshtein, Fibre Chem. 39, 355 (2007).

    Article  CAS  Google Scholar 

  3. S. K. Pal, R. S. Gandhi, and V. K. Kothari, J. Appl. Polym. Sci. 61, 401 (1996).

    Article  CAS  Google Scholar 

  4. H. A. Lecomte and J. J. Liggat, Polym. Degrad. Stab. 93, 498 (2008).

    Article  CAS  Google Scholar 

  5. Q. Fan and G. Mani, “Dyeble Polypropylene via Nano-technology,” in Nanofibers and Nanotechnology in Textiled, Ed. By P. J. Brown and K. Stevens (Woodhead Publ., Ltd., Cambridge, 2007), pp. 320–351.

    Google Scholar 

  6. Y. Liu and S. Kumar, ACS Appl. Mater. Interface 6, 6069 (2014).

    Article  CAS  Google Scholar 

  7. M. S. P. Shaffer and J. K. W. Sandler, “Carbon Nanotube and Nanofibre Reinforced Polymer Fibers,” in Nanofibers and Nanotechnology in Textiled, Ed. By P. J. Brown and K. Stevens (Woodhead Publ., Ltd., Cambridge, 2007), pp. 194–235.

    Google Scholar 

  8. S. Sathyanarayana and C. Hübner, “Thermoplastic Nanocomposites with Carbon Nanotubes,” in Structural Nanocomposites. Engineering Materials, Ed. by J. Njuguna (Springer, Berlin; Heidelber, 2013), pp. 19–60.

  9. T. W. Nanjing, “Shape Memory Polymer Yarns,” in Technical Textile Yarns: Industrial and Medical Application, Ed. by R. Alagirusamy and A. Das (Woodhead Publ., Ltd., Cambridge, 2010), pp. 429–452.

    Google Scholar 

  10. U. Khan, K. Young, A. O’Neil, and N. Coleman, J. Mater. Chem. 22, 12907 (2012).

    Article  CAS  Google Scholar 

  11. B. G. Min, H. G. Chae, M. L. Minus, S. Kumar, “Polymer/Carbon Nanotube Composite Fibers—An Overview,” in Functional Composites of Carbon Nanotubes and Applications, Ed. By K.-P. Lee, A. I. Gopalan, and D. S. Marquis (Research Signpost, India, 2009), pp. 43–73.

  12. F. Uddin, Metall. Mater. Trans. A 39A, 2804 (2008).

    Article  CAS  Google Scholar 

  13. A. Leszczynska, J. Njuguna, K. Pielichowski, and J. R. Banerjee, Thermochim. Acta. 453, 75 (2007).

    Article  CAS  Google Scholar 

  14. R. Hojiyev, Y. Ulcay, M. S. Çelik, and W. M. Carty, Appl. Clay Sci. 141, 204 (2017).

    Article  CAS  Google Scholar 

  15. S. Pavlidou and C. D. Papaspyrides, Prog. Polym. Sci. 33, 1119 (2008).

    Article  CAS  Google Scholar 

  16. F. Boylu, R. Hojiyev, G. Ersever, Y. Ulcay, and M. S. Çelik, Sep. Sci. Technol. 47, 842 (2012).

    Article  CAS  Google Scholar 

  17. M. D. Teli and R. D. Kale, Polym. Eng. Sci. 52, 1148 (2012).

    Article  CAS  Google Scholar 

  18. I. Özen and S. Güneş, Polym. Eng. Sci. 53, 1031 (2013).

    Article  Google Scholar 

  19. D. W. Litchfield, D. G. Baird, P. B. Rim, and C. Chen, Polym. Eng. Sci. 50, 2205 (2010).

    Article  CAS  Google Scholar 

  20. D. W. Litchfield and D. G. Baird, Polymer 49, 5027 (2008).

    Article  CAS  Google Scholar 

  21. G.-H. Guan, C.-C. Li, and D. Zhang, J. Appl. Polym. Sci. 95, 1443 (2005).

    Article  CAS  Google Scholar 

  22. W. Xiao, H. Yu, K. Han, and M. Yu, J. Appl. Polym. Sci. 96, 2247 (2005).

    Article  CAS  Google Scholar 

  23. J.-H. Chang, Polym. Technol. Eng. 47, 791 (2008).

    Article  CAS  Google Scholar 

  24. J.-H. Chang, S. J. Kim, Y. L. Joo, and S. Im, Polymer 45, 919 (2004).

    Article  CAS  Google Scholar 

  25. D. W. Litchfield, PhD Thesis (Virginia Polytech. Inst. State Univ., Blacksburg, 2008).

  26. K. Gurudatt, P. De, A. K. Rakshit, and M. K. Bardhan, J. Ind. Text. 34, 167 (2005).

    Article  CAS  Google Scholar 

  27. R. Hojiyev, Y. Ulcay, and M. S. Çelik, Polym. Sci., Ser. A 62, 392 (2020).

    Article  Google Scholar 

  28. R. Hojiyev, Y. Ulcay, and M. S. Çelik, Appl. Clay Sci. 146, 548 (2017).

    Article  CAS  Google Scholar 

  29. R. Hojiyev, PhD Thesis (Uludag University, Bursa, 2013).

  30. J. U. Calderon, B. Lennox, and M. R. Kamal, Appl. Clay Sci. 40, 90 (2008).

    Article  CAS  Google Scholar 

  31. W. H. Awad, J. W. Gilman, M. Nyden, R. H. Harris, T. E. Sutto, J. Callahan, P. C. Trulove, H. C. DeLong, and D. M. Fox, Thermochim. Acta 409, 3 (2004).

    Article  CAS  Google Scholar 

  32. C. B. Hedley, G. Yuan, and B. K. G. Theng, Appl. Clay Sci. 35, 180 (2007).

    Article  CAS  Google Scholar 

  33. M. Loria-Bastarrachea, W. Herrera-Kao, J. Cauich-Rodriguez, J. Cervantes-Uc, H. Vazquez-Torres, and A. Avila-Ortega, J. Therm. Anal. Calorim. 104, 737 (2010).

    Article  Google Scholar 

  34. X. Xu, Y. Ding, Z. Qian, F. Wang, B. Wen, and H. Zhou, Polym. Degrad. Stab. 94, 113 (2009).

    Article  CAS  Google Scholar 

  35. T. U. Patro, D. V. Khakhar, and A. Misra, J. Appl. Polym. Sci. 113, 1720 (2009).

    Article  CAS  Google Scholar 

  36. A. Sanchez-Solis, I. Romero-Ibara, M. R. Estrada, F. Calderas, and O. Manero, Polym. Eng. Sci. 44, 1094 (2004).

    Article  CAS  Google Scholar 

  37. K. Stoeffler, P. G. Lafleur, and J. Denault, Polym. Degrad. Stab. 93, 1332 (2008).

    Article  CAS  Google Scholar 

  38. M. R. Kamal, J. U. Calderon, and B. R. Lennox, J. Adhes. Sci. Technol. 23, 663 (2009).

    Article  Google Scholar 

  39. S.-J. Park, D.-I. Seo, and J.-R. Lee, J. Colloid Interface Sci. 251, 160 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Surface Free Energy Components by Polar/Dispersion and Acid-Base Analyses; and Hansen Solubility Parameters for Various Polymers. http://www.accudynetest.com/polytable_02.html. Cited 2021.

  41. W. Wu, R. J. Giese, and C. Van Oss, Langmuir 11, 379 (1995).

    Article  CAS  Google Scholar 

  42. C. M. Hansen, Hansen Solubility Parameters: A User’s Handbook, 2nd ed. (CRC Press, Boca Raton, 2007).

    Book  Google Scholar 

  43. J.-P. Latere Dwan’Isa, L. Rouxhet, V. Preat, M. Brewster, and A. Arien, Die Pharmazie 62, 499 (2007).

    Google Scholar 

  44. D. L. Ho and C. J. Glinka, Chem. Mater. 15, 1309 (2003).

    Article  CAS  Google Scholar 

  45. B. N. Jang, D. Wang, and C. A. Wilkie, Macromolecules 38, 6533 (2005).

    Article  CAS  Google Scholar 

  46. S.-K. Lim, E.-P. Hong, Y.-H. Song, B. J. Park, H. J. Choi, and I.-J. Chin, Polym. Eng. Sci. 50, 504 (2009).

    Article  Google Scholar 

  47. D. W. van Krevelen, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed. (Elsevier Sci. Ltd., Amsterdam; Oxford, 2009).

    Book  Google Scholar 

  48. L. Li, Z. Jiang, J. Xu, and T. Fang, J. Appl. Polym. Sci. 131, 40304 (2014).

    Google Scholar 

  49. S. Solarski, M. Ferreira, E. Devaux, G. Fontaine, P. Bachelet, S. Bourbigot, R. Delobel, P. Coszach, M. Murariu, A. Da Silva Ferreira, and M. Alexandre, J. Appl. Polym. Sci. 109, 841 (2008).

    Article  CAS  Google Scholar 

  50. M. C. Costache, M. J. Heidecker, E. Manias, and C. A. Wilkie, Polym. Adv. Technol. 17, 764(2006).

    Article  CAS  Google Scholar 

  51. K. Stoeffler, P. G. Lafleur, and J. Denault, Polym. Degrad. Stab. 93, 1332 (2008).

    Article  CAS  Google Scholar 

  52. Y. Ke, C. Long, and Z. Qi, J. Appl. Polym. Sci. 71, 1139 (1999).

    Article  CAS  Google Scholar 

  53. E. D. Weil and S. V. Levchik, “Overview of Modes of Action and Interaction of Flame Retardants,” in Flame Retardants For Plastics And Textiles: Practical Applications (Hanser Publ., Munich, 2009), pp. 241–253.

  54. X.-G. Ge, D.-Y. Wang, C. Wang, M.-H. Qu, J.-S. Wang, C.-S. Zhao, X.-K. Jing, and Y.-Z. Wang, Eur. Polym. J. 43, 2882 (2007).

    Article  CAS  Google Scholar 

  55. B. S. Mamatha and R. L. Jagadish, Int. J. Adv. Res. Sci. Technol. 2, 160 (2013).

    Google Scholar 

  56. J. Alongi, A. Frache, and E. Gioffredi, Fire Mater. 35, 383 (2011).

    Article  CAS  Google Scholar 

  57. C. Labruyere, G. Gorrasi, F. Monteverde, M. Alexandre, and P. Dubois, Polymer 50, 3626 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the Koreteks Mensucat San. Tic. A.Ş. (Bursa, Türkiye) for their supports for performing masterbatch preparation and melt spinning experiments in their plant, and as well for their help in measuring physical properties of yarn and IV value measurements of masterbatch and yarn in their laboratories.

Funding

This work financial supported by the Turkish Ministry of Science, Industry, and Technology and Korteks Mensucat Tic. San. A.Ş. (Bursa, Türkiye) through the San-Tez Projects (Industrial Ph.D. Projects) (project no. 00492.STZ.2009-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rustam Hojiyev.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rustam Hojiyev, Yusuf Ulcay Polyester Yarns Reinforced by Nanoclays. Polym. Sci. Ser. A 63, 318–333 (2021). https://doi.org/10.1134/S0965545X21030068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X21030068

Navigation