Skip to main content
Log in

2D Model Graphene Nanoribbons in a Polymer Matrix

  • THEORY AND SIMULATIONS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

A 2D model of a graphene nanoribbon in a polymer matrix (in a crystal of polyethylene macromolecules) is proposed, which makes it possible to consider large polymer samples with inclusions of single- and multilayer nanoribbons. The model is used to show that it is energetically more favorable for nanoribbons to be inside the polymer matrix than on its surface, and it is advantageous for multilayer nanoribbons inside to separate into individual layers. Compression of nanoribbons inside and on the surface of the matrix is carried out. It is shown that, regardless of the number of layers of a nanoribbon, its longitudinal compression, together with the matrix, can occur according to two scenarios: uniform compression of the entire nanoribbon + matrix system or nonuniform compression, for which localized bending occurs at the nanoribbon. The first scenario is achieved with weak compression, the second, with strong compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  3. C. Soldano, A. Mahmood, and E. Dujardin, Carbon 48, 2127 (2010).

    Article  CAS  Google Scholar 

  4. J. A. Baimova, B. Liu, S. V. Dmitriev, and K. Zhou, Phys. Status Solidi RRL 8, 336 (2014).

    Article  CAS  Google Scholar 

  5. J. A. Baimova, B. Liu, S. V. Dmitriev, N. Srikanth, and K. Zhou, Phys. Chem. Chem. Phys. 16, 19505 (2014).

    Article  CAS  Google Scholar 

  6. J. A. Baimova, E. A. Korznikova, S. V. Dmitriev, B. Liu, and K. Zhou, Rev. Adv. Mater. Sci. 39, 69 (2014).

    CAS  Google Scholar 

  7. A. V. Orlov and I. A. Ovid’ko, Rev. Adv. Mater. Sci. 40, 249 (2015).

    CAS  Google Scholar 

  8. S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).

    Article  CAS  Google Scholar 

  9. H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules 43, 6515 (2010).

    Article  CAS  Google Scholar 

  10. B. Das, K. E. Prasad, U. Ramamurty, and C. N. R. Rao, Nanotecnology 20, 125705 (2009).

    Article  Google Scholar 

  11. B. M. Itapu and A. H. Jayatissa, Chem. Sci. Int. J. 23 (3), 1 (2018).

    Article  CAS  Google Scholar 

  12. A. N. Rissanou and V. Harmandaris, Soft Matter 10, 2876 (2014).

    Article  CAS  Google Scholar 

  13. R. Atif and F. Inam, Graphene 5, 96 (2016).

    Article  CAS  Google Scholar 

  14. S. Güryel, M. Walker, P. Geerlings, F. De Proft, and M. R. Wilson, Phys. Chem. Chem. Phys. 19, 12959 (2017).

    Article  Google Scholar 

  15. A. N. Rissanou, P. Baĉová, A. J. Power, and V. Harmandaris, Mater. Today: Proc. 5, 27472 (2018).

    CAS  Google Scholar 

  16. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Rev. B: Condens. Matter Mater. Phys. 92, 035412 (2015).

    Article  Google Scholar 

  17. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Solid State 57, 2348 (2015).

    Article  CAS  Google Scholar 

  18. R. Zacharia, H. Ulbricht, and T. Hertel, Phys. Rev. B: Condens. Matter Mater. Phys. 69, 155406 (2004).

    Article  Google Scholar 

  19. W. Paul, D. Y. Yoon, and G. D. Smith, J. Chem. Phys. 103 (4), 22 (1995).

    Article  Google Scholar 

  20. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Rev. B 99, 235411 (2019).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Computing resources were provided by the Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 18-29-19135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, A.V. 2D Model Graphene Nanoribbons in a Polymer Matrix. Polym. Sci. Ser. A 63, 344–355 (2021). https://doi.org/10.1134/S0965545X21020115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X21020115

Keywords:

Navigation