Squeeze Orientation Reinforcement Effect on Cellulose Nanocrystals/Poly(butylene adipate-co-butylene terephthalate) Composites


Cellulose nanocrystals (CNC)/poly(butylene adipate-co-butylene terephthalate) composites enhanced compatibility with phthalic anhydride were one-step prepared via melt blending. The obtained composites then underwent squeezing treatment in a two-roll milling equipment at a given temperature. CNC/PBAT composites were separated and then tested via FTIR and UV–Vis spectrophotometer. During reactive blending, phthalic anhydride selectively reacts with CNC. Before squeezing, tensile strength of CNC/PBAT composites is weakened with increasing phthalic anhydride content. After squeeze treatment at an extension ratio of 6, tensile strength of CNC/PBAT (3/97) is dramatically increased from 29.6 to 148.0 MPa, which is much higher than that of pristine PBAT 85.0 MPa. SEM and WAXD results show that PBAT crystallinity is increased after orientation, and CNC show an orientation arrangement along force direction in PBAT matrix.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    G. Chen, T. Chen, K. Hou, W. Ma, Mi. Tebyetekerwa, Y. Cheng, W. Weng, and M. Zhu, Carbon 127, 218 (2018).

    CAS  Article  Google Scholar 

  2. 2

    J. Wang, H. Yang, M. Wu, X. Zhang, and Z. Xu, J. Mater. Chem. A5, 16289 (2018).

    Article  Google Scholar 

  3. 3

    A. Seabra, J. Bernardes, W. Fávaro, A. Paula, and N. Durán, Carbohydr. Polym. 181, 514 (2017).

    Article  Google Scholar 

  4. 4

    D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, and A. Dorris, Angew. Chem. 123, 5550 (2011).

    Article  Google Scholar 

  5. 5

    F. Cristofaro, M. Gigli, N. Bloise, H. Chen, G. Bruni, A. Munari, L. Moroni, N. Lotti, and L. Visai, Nanoscale 10, 8689 (2018).

    CAS  Article  Google Scholar 

  6. 6

    S. Molnes, A. Mamonov, G. Kristofer, S. Skule, and S. Kristin, Cellulose 25, 2289 (2018).

    CAS  Article  Google Scholar 

  7. 7

    W. Liu, A. Mohanty, L. Drzal, P. Askel, and M. Misra, J. Mater. Sci. 39, 1051 (2004).

    CAS  Article  Google Scholar 

  8. 8

    X. Li, L. Tabil, and S. Panigrahi, J. Polym. Environ. 15, 25 (2007).

    Article  Google Scholar 

  9. 9

    W. Hu, M. Tonthat, J. Denault, and C. Belanger, Sci. Eng. Compos. Mater. 18, 79(2011).

    CAS  Article  Google Scholar 

  10. 10

    W. Liu, R. Qiu, and K. Li, Polym. Compos. 37, 1602 (2016).

    Google Scholar 

  11. 11

    M. Börjesson, K. Sahlin, D. Bernin, and G. Westman, J. Appl. Polym. Sci. 135, 45963 (2018).

    Article  Google Scholar 

  12. 12

    O. Faruk, K. Bledzkia, H. Fink, F. Hans-Peter, and S. Mohini, Prog. Polym. Sci. 37, 1552 (2012).

    CAS  Article  Google Scholar 

  13. 13

    S. Spinella, A. Maiorana, Q. Qian, and N. Dawson, ACS Sustainable Chem. Eng. 4, 1538 (2016).

    CAS  Article  Google Scholar 

  14. 14

    C. Honorato-Rios, C. Lehr, C. Schütz, R. Sanctuary, M. Osipov, J. Baller, and J. Lagerwall, NPG Asia Mater. 10, 455 (2018).

    CAS  Article  Google Scholar 

  15. 15

    Q. Liu, M. Campbell, J. Evans, and I. Smalyukh, Adv. Mater. 26, 7178 (2014).

    CAS  Article  Google Scholar 

  16. 16

    J. Yi, Q. Xu, X. Zhang, and H. Zhang, Polymer 49, 4406 (2008).

    CAS  Article  Google Scholar 

  17. 17

    C. Zhou, R. Chu, R. Wu, and Q. Wu, Biomacromolecules 12, 2617 (2011).

    CAS  Article  Google Scholar 

  18. 18

    A. Pei, Z. Qi, and A. Lars, Compos. Sci. Technol. 70, 815(2010).

    CAS  Article  Google Scholar 

  19. 19

    S. Huan, G. Liu, G. Han, G. Han, and L. Bai, Biomacromolecules 19, 1037 (2018).

    CAS  Article  Google Scholar 

  20. 20

    C. Li, T. Jiang, J. Wang, H. Wu, S. Guo, X. Zhang, J. Li, J. Shen, R. Chen, and Y. Xiong, ACS Appl. Mater. Interfaces 9, 25818 (2017).

    CAS  Article  Google Scholar 

  21. 21

    L. Sim, T. Voo, and M. Mariatti, Key Eng. Mater. 471, 1118 (2011).

    Google Scholar 

  22. 22

    H. O’Connor, A. Dickson, and D. Dowling, Addit. Manuf. 22, 381 (2018).

    Google Scholar 

  23. 23

    T. Mukherjee, M. Czaka, N. Kao, R. Gupta, H. Choi, and S. Bhattacharya, Carbohydr. Polym. 102, 537 (2014).

    CAS  Article  Google Scholar 

  24. 24

    T. Madera-Santana, M. Misra, L. Drzal, D. Robledo, and Y. Freile-Pelegrin, Polym. Eng. Sci. 49, 1117 (2009).

    CAS  Article  Google Scholar 

  25. 25

    M. Rajendran, M. Manjusri, and A. K. Mohanty, J. Appl. Polym. Sci. 134, 45448, (2017).

    Article  Google Scholar 

  26. 26

    E. Sritham, P. Phunsombat, and J. Chaishome, Matec. Web Conf. 192, 03014 (2018).

  27. 27

    A. K. Mohapatra, S. Mohanty, and S. K. Nayak, J. Polym. Environ. 22, 398 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Q. Liu, Y. Hu, M. Li, and C. Hou, Eng. Plast. Appl. 44, 68 (2016).

    CAS  Google Scholar 

  29. 29

    Z. Gan, H. Abe, H. Kurokawa, and Y. Doi, Biomacromolecules 2, 605 (2001).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Xuzhen Zhang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xuzhen Zhang, Lu, C., Zhou, C. et al. Squeeze Orientation Reinforcement Effect on Cellulose Nanocrystals/Poly(butylene adipate-co-butylene terephthalate) Composites. Polym. Sci. Ser. A 62, 722–731 (2020). https://doi.org/10.1134/S0965545X2033007X

Download citation