Electrical and Optical Properties of Polypyrrole and Polyaniline Blends

Abstract

This paper reports that PPy/PANI blends are successfully synthesized from solution process. For high performance optoelectronic devices, understanding the electrical and optical properties of materials should be significant. The aim of this work is to study the polymer-blend morphologies as well as the electrical and optical properties of materials. The polymer blends were prepared as a function of composition. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), ultraviolet-visible (UV–Vis) spectroscopy, photoluminescence (PL) and current-voltage (IV) characteristics techniques were applied for characterizing the PPy/PANI blends. The PPy/PANI blend is a semiconductor by showing the conductivity in the range of 10–6 to 10–3 S/cm at room temperature. The result determines the optical band gap of each blend with different composition, providing the optical band gap of the blends at the range of 1.53–1.95 eV. Finally, the electrical transport and the chemical composition of the PPy/PANI blends were characterized.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. 1

    J. Bahadra, A. Alkareem, and N. Al-Thani, J. Polym. Res. 27, 122 (2020).

    Article  Google Scholar 

  2. 2

    M. Tomczykowa and M. E. Plinsk-Brzeniska, Polymer 11, 350 (2019).

    Article  Google Scholar 

  3. 3

    N. Dhachanamourthi, L. Chandra, P. Suresh, and K. Perumal, Mechanics, Materials Science and Engineering 9, (2017). https://doi.org/10.2412/mmse.41.37.672

  4. 4

    T. P. Kaloni, G. Schreckenbach, and M. S. Freund, J. Phys. Chem. C 119, 3979 (2015).

    CAS  Article  Google Scholar 

  5. 5

    A. R. Sadrolhosseini, S. A. Rashid, A. S. M. Noor, A. Kharazmi, H. N. Lim, and M. A. Mahdi, J. Nanomater. 2016, 8 (2016).

    Google Scholar 

  6. 6

    L. M. Yuningsih, D. Mulyadi, and I. Aripandi, Am. J. Mater. Sci. 7, 59 (2017).

    Google Scholar 

  7. 7

    M. Rahaman, A. Aldalbahi, M. Almoiqli and S. Alzahly, Polymers 10, 632 (2018).

    Article  Google Scholar 

  8. 8

    V. Bhavsar and D.Tripathi, Indian J. Pure Appl. Phys. 54, 105 (2016).

    Google Scholar 

  9. 9

    A. Yussuf, M. Al-Saleh, S. Al-Enezi, and G. Abraham, Int. J. Polym. Sci. 2018, 4191747 (2018).

    Article  Google Scholar 

  10. 10

    S. Shrikrushna, J. A. Kher, and M. V. Kulkarni, J. Nanomed. Nanotechnol. 6, 313 (2015).

    Google Scholar 

  11. 11

    H. Mizobuchi, T. Kawai, H. Araki, N. Yamasaki, K. Yoshino, and A. Sakamoto, Syth Met. 69, 239 (1995).

    CAS  Google Scholar 

  12. 12

    A. Kassim, Z. Zainal, W. Mahmood, M. Yunus1, M. S. Husin, D. Kuang, A. H. Abdullah, and H. N. M. Ekramul Mahmud, Solid State Sci. Technol. 12, 29 (2004).

    Google Scholar 

  13. 13

    Q. Wang, Y. Wang, Q. Meng, T. Wang, W. Guo, G. Wub, and L. Youa, RSC Adv. 7, 2796 (2017).

  14. 14

    J. Tahalyani, K. K. Rahangdale, and K. Balasubramanian, RSC Adv. 6, 69733 (2016).

  15. 15

    N. Su, Nanoscale Res. Lett. 10, 997 (2015).

    PubMed  Google Scholar 

  16. 16

    T. A. Tikish, A. Kumar, and J. Y. Kim, Adv. Mater. Sci. Eng. 2018, 3890637 (2018).

    Article  Google Scholar 

  17. 17

    M. Wright, PhD Thesis (UNSW Australia, 2015).

  18. 18

    A. M. Ismail, T. Soga, and T. Jimbo, Int. J. New Horiz. Phys. 2 (2), 87 (2015).

    Google Scholar 

  19. 19

    E. Cruz-Reyes, C. Tenorio, M. Castañeda, H. Saavedra, and J. Sánchez, MRS Adv. 3, 1 (2018).

    Google Scholar 

  20. 20

    A. Shubha, S. R. Manohara, and L. Gerward, J. Mol. Liq. 247, 328 (2017).

    CAS  Article  Google Scholar 

  21. 21

    A. N. J. Al-Daghman, K. Ibrahim, and N. M. Ahmed, J. Optoelectron. Adv. Mater. 8, 175 (2016).

    Google Scholar 

  22. 22

    M. Šetka, J. Drbohlavová, and J. Hubálek, Sensors 17, 562 (2017).

    Article  Google Scholar 

  23. 23

    N. Velhal, N. D. Patil, S. Jamdade, and V. Puri, Appl. Surf. Sci. 307,129 (2014).

    CAS  Article  Google Scholar 

  24. 24

    M. Hafeez, M. Faheem, Z. U. Abdin, Z. U. Abdin, K. Ahmad, S. Fazil, and B. A. Khan, Dig. J. Nanomater. Biostructures 12, 707 (2017).

    Google Scholar 

  25. 25

    J. M. Lee, G. Y. Noh, B. G. Kim, Y. Yoo, W. J. Choi, D.-G. Kim, H. G. Yoon, and Y. S. Kim, ACS Macro Lett. 8, 912 (2019).

    CAS  Article  Google Scholar 

  26. 26

    N. Ghobadi, Int. Nano Lett. 3, 2 (2013).

    Article  Google Scholar 

  27. 27

    P. Makula, M. Pacia, and W. Macyk, J. Phys. Chem. Lett. 9, 6814 (2018).

    CAS  Article  Google Scholar 

  28. 28

    V. J. Babu, S. Vempati, and S. Ramakrishna, Mater. Sci. Appl. 04, 1 (2013).

    CAS  Google Scholar 

  29. 29

    A. Patel, P. Pataniya, K. D. Patel, G. K. Solanki, and V. M. Pathak, AIP Conf. Proc. 1837, 040047 (2017).

    Article  Google Scholar 

  30. 30

    S. Padmapriya and S. Harinipriya, J. Mater. Res. Technol. 8, 4435 (2019).

    CAS  Article  Google Scholar 

  31. 31

    E. Lim and R. Ismail, Electronics 4, 586 (2015).

    CAS  Article  Google Scholar 

  32. 32

    J. Y. Kim, H. Cho, S. Noh, Y. Lee, Y. M. Nam, C. Lee, and W. H. Jo, J. Appl. Phys. 111, 043710 (2012).

    Article  Google Scholar 

  33. 33

    F. Cristovan, S. Lemos, and E. Pereira, J. Appl. Polym. Sci. 116, 825 (2009).

    Google Scholar 

  34. 34

    J. A. Röhr, X. Shi, S. A. Haque, T. Kirchartz, and J. Nelson, Phys. Rev. Appl. 9, 044017 (2018).

    Article  Google Scholar 

  35. 35

    C. Liu, K. Huang, W.-T. Park, M. Li, T. Yang, X. Liu, L. Liang, T. Minari, and Y.-Y. Noh, Mater. Horiz. 4, 608 (2017).

    CAS  Article  Google Scholar 

  36. 36

    S. Bose, N. H. Kim, T. Kuila, K. T. Lau, and J. Lee, Nanotechnology 22, 295202 (2011).

    Article  Google Scholar 

  37. 37

    W. A. Hammed, M. S. Rahman, H. N. M. E. Mahmud, R. Yahya, and K. Sulaiman, Des. Monomers Polym. 20, 368 (2017).

    CAS  Article  Google Scholar 

  38. 38

    V. S. Haktawat, K. Sharma, and N. S. Saxena, J. Ovonic Res. 6, 239 (2010).

  39. 39

    T. H. de la Cruz, C. H. Tenorio, M. V. Castañeda, H. M. Saavedra, and J. H. P. Sánchez, MRS Adv. 3, 3839 (2018).

    Article  Google Scholar 

  40. 40

    M. Rahaman, A. Aldalbahi, M. Almoiqli, and S. Alzahly, Polymers 10, 632 (2018).

    Article  Google Scholar 

Download references

Funding

This work is supported by the Ethiopian Ministry of Education.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tekalign A. Tikish.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tikish, T.A., Kumar, A. & Kim, J.Y. Electrical and Optical Properties of Polypyrrole and Polyaniline Blends. Polym. Sci. Ser. A 62, 680–690 (2020). https://doi.org/10.1134/S0965545X20330056

Download citation