Mullins Effect and Its Reversibility for Thermoplastic Vulcanizates Based on Ethylene–Acrylic Acid Copolymer/Nitrile–Butadiene Rubber Blends

Abstract

Mullins effect during uniaxial cyclic compression tests, together with its reversibility, of ethylene–acrylic acid copolymer (EAA)/nitrile–butadiene rubber (NBR) thermoplastic vulcanizates (TPVs) were investigated systematically. The results showed that EAA/NBR TPVs had excellent mechanical properties when the weight ratio was 40/60. Morphology studies showed that sphere-like NBR particles were dispersed evenly in the etched TPVs surface with diameters of 5–8 μm. The experimental results of Mullins effect indicated that a stress softening phenomenon in the stress–strain curves of EAA/NBR TPVs during the uniaxial loading–unloading cycles could be observed obviously; moreover, the reversibility of Mullins effect could be significantly enhanced by increasing heat treatment temperature.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Y. K. Chen, D. S. Yuan, and C. H. Xu, ACS Appl. Mater. Interfaces 6, 3811 (2014).

    CAS  Article  Google Scholar 

  2. 2

    C. Xu, W. Wu, J. Nie, L. Fu, and B. Lin, Composites, Part A 117, 116 (2019).

    CAS  Article  Google Scholar 

  3. 3

    M. A. Roy, M. Duin, A. B. Spoelstra, and J. G. Goossens, Soft Matter 6, 1758 (2010).

    Article  Google Scholar 

  4. 4

    T. Zhao, W. Yuan, Y. Li, Y. Weng, and J. Zeng, Macromolecules 51, 2027 (2018).

    CAS  Article  Google Scholar 

  5. 5

    S. Datta, K. Naskar, J. Jelenic, and J. W. M. Noordermeer, J. Appl. Polym. Sci. 98, 1393 (2005).

    CAS  Article  Google Scholar 

  6. 6

    I. W. Small, P. Singhal, T. S. Wilson, and D. J. Maitland, J. Mater. Chem. 20, 3356 (2010).

    CAS  Article  Google Scholar 

  7. 7

    T. I. Medintseva, N. A. Erina, and E. V. Prut, Polym. Sci., Ser. A 50, 647 (2008).

    Article  Google Scholar 

  8. 8

    Z. H. Liu, F. J. Zeng, J. Du, X. Fan, Z. H. Zuo, and C. Y. Tao, J. Appl. Biomater. Funct. Mater. 44, 2393 (2013).

    CAS  Google Scholar 

  9. 9

    A. F. Blanchard and D. Parkinson, Ind. Eng. Chem. 44, 799 (1952).

    CAS  Article  Google Scholar 

  10. 10

    R. Houwink, Rubber Chem. Technol. 29, 888 (1956).

    Article  Google Scholar 

  11. 11

    G. Kraus, C. W. Childers, and K. W. Rollmann, J. Appl. Polym. Sci. 10, 229 (1996).

    Article  Google Scholar 

  12. 12

    D. E. Hanson, M. Hawley, R. Houlton, K. Chitanvis, P. Rae, E. B. Orler, and D. A. Wrobleski, Polymer 46, 10989 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Y. Fukahori, J. Appl. Polym. Sci. 95, 60 (2005).

    CAS  Article  Google Scholar 

  14. 14

    A. L. V. Svistkov and B. Lauke, Polym. Sci., Ser. A 50, 591 (2008).

    Article  Google Scholar 

  15. 15

    A. Amin, M. S. Alam, and Y. Okui, Mech. Mater. 34, 75 (2002).

    Article  Google Scholar 

  16. 16

    A. Dorfmann, Acta Mech. 165, 117 (2003).

    Article  Google Scholar 

  17. 17

    M. F. Beatty, Elasticity 59, 369 (2000).

    Article  Google Scholar 

  18. 18

    J. Li, D. Mayau, and V. Lagarrigue, J. Mech. Phys. Solids 56, 953 (2008).

    CAS  Article  Google Scholar 

  19. 19

    W. V. Mars, and A. Fatemi, J. Eng. Mater. Technol. 126, 19 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Z. B. Wang, S. Li, D. Y. Wei, and J. Zhao, J. Thermoplast. Compos. 28, 1154 (2015).

    CAS  Google Scholar 

  21. 21

    R. Scaffaro, F. P. La Mantia, and C. Castronovo, Macromol. Chem. Phys. 205, 1402 (2004).

    CAS  Article  Google Scholar 

  22. 22

    J. J. Liu, and Y. Zhang, Polym. Degrad. Stab. 96, 2215 (2011).

    CAS  Article  Google Scholar 

  23. 23

    M. M. Salehi, T. Khalkhali, and A. A. Davoodi, Polym. Sci., Ser. A 58, 567 (2016).

    CAS  Article  Google Scholar 

  24. 24

    C. C. Wang, Y. F. Zhang, and Z. B. Wang, J. Thermoplast. Compos. 30, 827 (2017).

    CAS  Google Scholar 

  25. 25

    L. Mullins, and N. Tobin, Rubber Chem. Technol. 30, 555 (1957).

    Article  Google Scholar 

  26. 26

    L. Zhang, J. Hua, and Z. B. Wang, J. Polym. Res. 26, 11 (2019).

    CAS  Article  Google Scholar 

  27. 27

    L. Mullins, Rubber Chem. Technol. 42, 339 (1969).

    CAS  Article  Google Scholar 

  28. 28

    V. A. Kalinchev, Polym. Sci., Ser. C 49, 115 (2007).

    Article  Google Scholar 

  29. 29

    G. Marckmann, E. Verron, L. Gornet, G. Chagnon, P. Charrier, and P. Fort, J. Mech. Phys. Solids 50, 2011 (2002).

    CAS  Article  Google Scholar 

Download references

Funding

The work was supported by Shandong Provincial Natural Science Foundation, China (ZR2017MEM021) and Upgraded Project of Shandong Province for Guidance Ability of Graduate Tutors (SDYY17044).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhaobo Wang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yingtao Sun, Yang, L., Liu, F. et al. Mullins Effect and Its Reversibility for Thermoplastic Vulcanizates Based on Ethylene–Acrylic Acid Copolymer/Nitrile–Butadiene Rubber Blends. Polym. Sci. Ser. A 62, 670–679 (2020). https://doi.org/10.1134/S0965545X20060103

Download citation