Peculiarities of Dissolving Polyacrylonitrile Copolymer Containing Methylsulfo Groups in N-Methylmorpholine-N-Oxide


The process of solid-phase dissolution of polyacrylonitrile copolymer containing ionic sulfo groups in an electron-donating solvent, N-methylmorpholine-N-oxide, is studied depending on its crystal hydrate form and preparation conditions. Optical studies of the transition of solid-phase copolymer–solvent systems to a viscous flow state make it possible to construct solubility curves and reveal stages of morphological transformations during dissolution, explaining their nature. Solid-phase mixed systems are studied by IR spectroscopy, and interactions of the functional groups of the copolymer with various crystal hydrates of the solvent are analyzed both during standard mechanical mixing and mechanochemical activation under intense shear deformation, which predetermines the formation of solid solutions.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    V. G. Kulichikhin, I. Yu. Skvortsov, M. I. Mironova, A. N. Ozerin, T. S. Kurkin, A. K. Berkovich, E. I. Frenkin, and A. Ya. Malkin, Adv. Polym. Technol. 37, 1099 (2018).

    CAS  Article  Google Scholar 

  2. 2

    I. S. Makarov, L. K. Golova, M. I. Vinogradov, D. N. Chernenko, and V. G., IOP Conf. Ser.: Earth Environ. Sci. 316, 012032 (2019).

  3. 3

    R. Eslami Farsani, A. Shokuhfar, and A. Sedghi, Fibre Chem. 38, 383 (2006).

    Article  Google Scholar 

  4. 4

    A. A. Konkin, M. T. Azarova, N. S. Volkova, R. M. Levit, and V. P. Sergeev, Fibre Chem. 9, 298 (1978).

    Article  Google Scholar 

  5. 5

    G. A. Budnitskii, V. S. Matveev, and M. E. Kazakov, Fibre Chem. 25, 360 (1994).

    Article  Google Scholar 

  6. 6

    J. M. Spörl, A. Ota, S. Son, K. Massone, F. Hermanutz, and M. R. Buchmeiser, Mater. Today Commun. 7, 1 (2016).

    Article  Google Scholar 

  7. 7

    Yu. N. Sazanov, Vestn. Tver. Gos. Univ., Ser. Khim., No. 2, 96 (2017).

  8. 8

    H. Mainka, L. Hilfert, S. Busse, F. Edelmann, E. Haak, and A. S. Herrmann, J. Mater. Res. Technol. 4, 377 (2015).

    CAS  Article  Google Scholar 

  9. 9

    A. T. Mukhamedzyanov, A. A. Mukhamedzyanova, R. N. Gimaev, and R. N. Galiakhmetov, Vestn. Bashk. Univ. 20, 1218 (2015).

    Google Scholar 

  10. 10

    A. A Konkin, Carbon and Other Heat-Resistant Fibrous Materials (Khimiya, Moscow, 1974), p. 148 [in Russian].

    Google Scholar 

  11. 11

    A. T. Serkov and M. B. Radishevskii, Fibre Chem. 40, 24 (2008).

    CAS  Article  Google Scholar 

  12. 12

    M. Kibayashi, S. Seike, and L. A. Pragner, US Patent No. 20130253096A1 (2011).

  13. 13

    T. Higuchi and M. Sakaguchi, EP Patent No. 3093380A1 (2014).

  14. 14

    S. A. Podkopaev and V. A. Tyumentsev, RF Patent No. 2330906 (2007).

  15. 15

    D. F. Grishin and I. D. Grishin, Fibre Chem. 50, 514 (2019).

    CAS  Article  Google Scholar 

  16. 16

    E. R. Badamshina, A. A. Grishchuk, A. E. Tarasov, Ya. I. Estrin, and S. M. Aldoshin, RF Patent No. 2565767 (2014).

  17. 17

    I. D. Grishin, D. Yu. Kurochkina, and D. F. Grishin, RF Patent No. 2627264 (2016).

  18. 18

    E. Fittser and V. Fros, Khim. Volokna, No. 2, 14 (1992).

    Google Scholar 

  19. 19

    O. V. Zhidkova, I. N. Andreeva, M. B. Radishevskii, A. T. Serkov, A. T. Kalashnik, and N. V. Chichinova, Fibre Chem. 25, 368 (1994).

    Article  Google Scholar 

  20. 20

    E. V. Chernikova, R. V. Toms, N. I. Prokopov, V. R. Duflot, A. V. Plutalova, S. A. Legkov, and V. I. Gomzyak, Polym. Sci. Ser. B 59, 28 (2017).

    CAS  Article  Google Scholar 

  21. 21

    H. Jiang, D. Pan, and M. Zhou, Global J. Eng. Sci. Res. Manage. 2 (8), 9 (2015).

    Google Scholar 

  22. 22

    A. Gupta and R. Singhal, J. Polym. Sci., Polym. Phys. Ed. 21, 2243 (1983).

    CAS  Article  Google Scholar 

  23. 23

    M. Hattori, H. Yamazaki, M. Saito, K. Hisatani, and K. Okajima, Polym. J. 28, 594 (1996).

    CAS  Article  Google Scholar 

  24. 24

    M. M. Iovleva, V. N. Smirnova, and G. A. Budnitskii, Fibre Chem. 33, 262 (2001).

    CAS  Article  Google Scholar 

  25. 25

    I. S. Makarov, L. K. Golova, L. K. Kuznetsova, A. V. Rebrov, A. K. Berkovich, I. Yu. Skvortsov, and V. G. Kulichikhin, Russ. J. Gen. Chem. 87, 1351 (2017).

    CAS  Article  Google Scholar 

  26. 26

    D. L. Johnson, US Patent No. 3447939 (1969).

  27. 27

    L. K. Golova, Fibre Chem. 28, 5 (1996).

    Article  Google Scholar 

  28. 28

    L. K. Golova, Ross. Khim. Zh. 46, 49 (2002).

    CAS  Google Scholar 

  29. 29

    R. G. Zhbankov and P. V. Kozlov, Physics of Cellulose and its Derivatives (Nauka i Tekhnika, Minsk, 1983) [in Russian].

    Google Scholar 

  30. 30

    I. S. Makarov, L. K. Golova, M. I. Vinogradov, M. V. Mironova, I. S. Levin, G. N. Bondarenko, G. A. Shandryuk, N. A. Arkharova, and V. G. Kulichikhin, Polym. Sci., Ser. A 61, 598 (2019).

    CAS  Article  Google Scholar 

  31. 31

    L. K. Golova, I. S. Makarov, E. V. Matukhina, S. A. Kuptsov, G. K. Shambilova, and V. G. Kulichikhin, Polym. Sci., Ser. A 50, 665 (2008).

    Article  Google Scholar 

  32. 32

    L. K. Golova, I. S. Makarov, and E. P. Plotnikova, G. Sh. Shambilova, A. K. Tereshin, and V. G. Kulichikhin, Polym. Sci., Ser. A 51, 283 (2009).

    Article  Google Scholar 

  33. 33

    B. Morgenstern, O. Leillinger, and R. Maron, Angew. Makromol. Chem. 243 (4251), 129 (1996).

    CAS  Article  Google Scholar 

  34. 34

    I. S. Makarov, L. K. Golova, L. K. Kuznetsova, A. V. Shlyakhtin, I. E. Nifant’ev, and V. G. Kulichikhin. RF Patent No. 2541473 (2014).

  35. 35

    V. Kulichikhin, L. Golova, I. Makarov, G. Bondarenko, V. Makarova, S. Ilyin, I. Skvortsov, and A. Berkovich, Eur. Polym. J. 92, 326 (2017).

    CAS  Article  Google Scholar 

  36. 36

    I. S. Gorodnyakova, L. A. Shcherbina, and K. Yu. Ustinov, Polim. Mater. Tekhnol. 3 (4), 37 (2017).

    Google Scholar 

  37. 37

    L. K. Golova, V. V. Romanov, O. B. Lunina, V. A. Platonov, S. P. Papkov, O. D. Khorozova, V. V. Yakshin, T. P. Belasheva, and A. N. Sokira, RF Patent No. 1645308 (1991).

  38. 38

    H. Chanzy and A. Peguy, J. Polym. Sci., Polym. Phys. Ed. 18, 1137 (1980).

    CAS  Article  Google Scholar 

  39. 39

    M. M. Iovleva and V. N. Smirnova, Polym. Sci., Ser. A 25, 749 (1986).

    Google Scholar 

  40. 40

    L. K. Golova, O. E. Borodina, O. B. Lunina, I. D. Zenkov, and I. N. Andreeva, Physical and Chemical Foundations of Production of Rayon by Nontraditional Methods, Ed. by S. P. Papkova and I. P. Baksheeva (VNIIVproekt, Mytishchi, 1989), p. 113 [in Russian].

Download references


The study was supported by the Russian Science Foundation (grant no. 17-79-30108).

Author information



Corresponding author

Correspondence to L. K. Golova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golova, L.K., Bondarenko, G.N., Makarov, I.S. et al. Peculiarities of Dissolving Polyacrylonitrile Copolymer Containing Methylsulfo Groups in N-Methylmorpholine-N-Oxide. Polym. Sci. Ser. A 62, 597–606 (2020).

Download citation