Synthesis of Methacrylamide/Chitosan Polymeric Cryogels and Swelling/Dye Sorption Properties

Abstract

In this study, polymeric cryogels were synthesized to develop a new methacrylamide-based polymeric material that includes chitosan to remove dyes that may be present as contaminants in aqueous media. Methacrylamide/chitosan (MAmCS) cryogels prepared under cryogenic conditions were characterized by FTIR, SEM/EDX and swelling tests. It was determined that the Langmuir isotherm model, pseudo second order and intra-particle kinetic models were found to be the best fit models to describe adsorption between polymeric cryogels and anionic dye calconcarboxylic acid (CCA). The results showed that the cryogels obtained can be used as an alternative adsorbents for the treatment of wastewater containing pollutant species from different industries and may help other applications in the design of MAmCS polymeric materials.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    G. Crini and P. M. Badot, Prog. Polym. Sci. 33, 399 (2008).

    CAS  Article  Google Scholar 

  2. 2

    B. Meroufel, O. Benali, M. Benyahia, Y. Benmoussa, and M. A. Zenasni, J. Mater. Environ. Sci. 4, 482 (2013).

    CAS  Google Scholar 

  3. 3

    S. Jana, J. Ray, B. Mondal, S. S. Pradhan, and T. Tripathy, Colloids Surf. A 553, 472 (2018).

    CAS  Article  Google Scholar 

  4. 4

    L. Q. Hu, L. Dai, R. Liu, and C. L. Si, J. Mater. Sci. 52, 13689 (2017).

    CAS  Article  Google Scholar 

  5. 5

    M. C. G. Pella, M. K. Lima-Tenorio, E. Tenorio-Neto, M. R. Guilherme, E. C. Muniz, and A. F. Rubira, Carbohydr. Polym. 196, 233 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Y. Yue, X. Wang, J. Han, L. Yu, J. Chen, Q. Wu, and J. Jiang, Carbohydr. Polym. 206, 289 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    V. I. Lozinsky, Adv. Polym. Sci. 263, 1 (2014).

    CAS  Article  Google Scholar 

  8. 8

    V. M. Gunko, I. N. Savina, and S. V. Mikhalovsky, Adv. Colloid Interface Sci. 187188, 1 (2013).

    Article  CAS  Google Scholar 

  9. 9

    P. K. Dutta, J. Dutta, and V. S. Tripathi, J. Sci. Ind. Res. 63, 20 (2004).

    CAS  Google Scholar 

  10. 10

    D. A. Gyles, L. D. Castro, and R. M. Ribeiro-Costa, Eur. Polym. J. 88, 373 (2017).

    CAS  Article  Google Scholar 

  11. 11

    S. Yasmeen, M. K. Kabiraz, B. Saha, M. R. Qadir, M. A. Gafur, and S. M. Masum, Int. Res. J. Pure Appl. Chem. 10(4), 1 (2016).

    CAS  Article  Google Scholar 

  12. 12

    J. Zhou, B. Hao, L. Wang, J. Ma, and W. Cheng, Sep. Purif. Technol. 176, 193 (2017).

    CAS  Article  Google Scholar 

  13. 13

    A. Narayanan, R. Kartik, E. Snageetha, and R. Dhamodharan, Carbohydr. Polym. 191, 152 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Ö. B. Üzüm, İ. Bayraktar, S. Kundakcı, and E. Karadağ, Polym. Bull. (2019). https://doi.org/10.1007/s00289-019-02781-4

  15. 15

    P. H. Corkhill, A. S. Trevett, and B. J. Tighe, Proc. Inst. Mech. Eng. 204, 147 (1990).

    CAS  Article  Google Scholar 

  16. 16

    S. J. Lee, S. S. Kim, and Y. M. Lee, Carbohydr. Polym. 41, 197 (2000).

    Article  Google Scholar 

  17. 17

    J. R. Khurma and A. V. Nand, Polym. Bull. 59, 805 (2008).

    CAS  Article  Google Scholar 

  18. 18

    R. L. Ritger and N. A. Peppas, Fuel 66, 1379 (1987).

    CAS  Article  Google Scholar 

  19. 19

    C. Vasile, E. Stoleru, R. N. Darie-Nitja, R. P. Dumitriu, D. Pamfil, and L. Tartau, Polymers 11, 941 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  20. 20

    S. Kundakcı, J. Ins. Sci. Technol. 9, 1476 (2019).

    Google Scholar 

  21. 21

    M. Dash, F. Chiellini, R. M. Ottenbrite, and E. Chiellini, Prog. Polym. Sci. 36, 981 (2011).

    CAS  Article  Google Scholar 

  22. 22

    R. Dengre, M. Bajpai, and S. K. Bajpai, J. Appl. Polym. Sci. 76, 1706 (2000).

    CAS  Article  Google Scholar 

  23. 23

    S. Ekici and S. Tetik, Polym. Int. 64, 335 (2015).

    CAS  Article  Google Scholar 

  24. 24

    E. Karadağ, Z. D. KasimÖztürk, Ö. B. Üzüm, and S. Kundakcı, J. Encapsulation Adsorpt. Sci. 9, 35 (2019).

    Article  CAS  Google Scholar 

  25. 25

    Ö. B. Üzüm, S. Kundakcı, G. Cetin, and E. Karadağ, Desalin Water Treat. 58, 332 (2017).

    Article  CAS  Google Scholar 

  26. 26

    G. Z. Kyzas and N. K. Lazaridis, J. Colloid Interface Sci. 331, 32 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    F. Kousar, M. A. Malana, A. H. Chughtai, and M. S. Khan, Polym. Bull. 75, 1275 (2018).

    CAS  Article  Google Scholar 

  28. 28

    O. E. Philippova and A. R. Khokhlov, Polym. Sci.: Compr. Ref. 1, 339 (2012).

    Google Scholar 

  29. 29

    N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pharm. Biopharm. 50, 27 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, and H. Md. Akil, Mater. Sci. Eng. 57, 414 (2015).

    CAS  Article  Google Scholar 

  31. 31

    N. Sood, A. Bhardwaj, S. Mehta, and A. Mehta, Drug Delivery 23, 748 (2016).

    CAS  Article  Google Scholar 

  32. 32

    Y. Işkver, D. Saraydın, and H. Aydın, J. Macromol. Sci., Part A: Pure Appl. Chem. 54, 452 (2017).

    Article  CAS  Google Scholar 

  33. 33

    D. G. Pedley, P. J. Skelly, and B. J. Tighe, Br. Polym. J. 12, 99 (1980).

    CAS  Article  Google Scholar 

  34. 34

    S. J. Lee, S. S. Kim, and Y. M. Lee, Carbohydr. Polym. 41, 197 (2000).

    Article  Google Scholar 

  35. 35

    S. Rakass, A. Mohmoud, H. O. Hassani, M. Abboudi, F. Kooli, and F. A. Wadaani, Molecules 23, 1950 (2018).

    PubMed Central  Article  CAS  Google Scholar 

  36. 36

    Z. M. Hasdemir and S. Simsek, Cumhuriyet. Sci. J. 39, 181 (2018).

    Google Scholar 

  37. 37

    M. T. Nakhjiri, G. B. Marandi, and M. Kurdtabar, J. Polym. Environ. 27, 581 (2019).

    CAS  Article  Google Scholar 

  38. 38

    M. B. Ibrahim and S. Sani, J. Phys. Chem. 4, 139 (2014).

    Google Scholar 

  39. 39

    X. Chen, Information 6, 14 (2015).

    Article  Google Scholar 

  40. 40

    N. T. Abdel-Ghani, G. A. El-Chaghaby, E. S. A. Rawash, and E. C. Lima, J. Chil. Chem. Soc. 62, 3505 (2017).

    CAS  Article  Google Scholar 

  41. 41

    S. H. Chien and W. R. Clayton, Soil. Sci. Soc. Am. J. 44, 265 (1980).

    CAS  Article  Google Scholar 

  42. 42

    Y. S. Ho, Water Res. 40, 119 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    L. Zhang, H. A. Loaiciga, M. Xu, C. Du, and Y. Du, Int. J. Environ. Res. Public Health 12, 14312 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    A. E. Ofomaja, Bioresour. Technol. 101, 5868 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Scientific Projects Commission of Aydın Adnan Menderes University Scientific Research Projects FEF-17017.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Semiha Kundakci.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semiha Kundakci Synthesis of Methacrylamide/Chitosan Polymeric Cryogels and Swelling/Dye Sorption Properties. Polym. Sci. Ser. A 62, 481–493 (2020). https://doi.org/10.1134/S0965545X20050107

Download citation