Skip to main content
Log in

Rheological Properties of Poly(acrylic acid) Complexes with Poly(sodium styrenesulfonate) in Semidilute Aqueous Solutions

  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Solutions of poly(acrylic acid) mixtures with poly(sodium styrenesulfonate) in water and in decimolar hydrochloric acid are studied by potentiometry, viscometry, and rotational rheometry. It is shown that, in a wide range of mixture compositions, thermosensitive polyelectrolyte complexes are formed via ion–dipole interactions of functional groups of polymers. The formation of complexes in the semidilute solution regime is accompanied by a significant increase in viscosity as compared with solutions of the initial polymers, which makes it possible to obtain systems with high viscosity without using large concentrations of polyelectrolytes. The dependence of viscosity on the composition of the mixture passes through a maximum corresponding to the most complete binding of the components of the complex, and the position of the maximum does not depend on the molecular weight of poly(sodium styrenesulfonate) and is determined by the ratio of the concentrations of the functional groups of the polymers. The frequency dependences of the storage modulus and the loss modulus demonstrate that the system experiences strong structuring in the process of complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. V. Dobrynin, M. Rubinstein, and R. H. Colby, Macromolecules 28, 1859 (1996).

    Article  Google Scholar 

  2. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1988).

    Google Scholar 

  3. M. Rubinstein, R. H. Colby, and A. V. Dobrynin, Phys. Rev. Lett. 73, 2776 (1994).

    Article  CAS  Google Scholar 

  4. K. C. Tam and G. Tiu, J. Non-Newtonian Fluid Mech. 46, 275 (1993).

  5. P. Debye, J. Chem. Phys. 14, 636 (1946).

    Article  CAS  Google Scholar 

  6. M. Muthukumar, J. Chem. Phys. 107, 2619 (1997).

    Article  CAS  Google Scholar 

  7. M. Sedlàk, Langmuir 15, 4045 (1999).

    Article  Google Scholar 

  8. P. Štěpánek and W. Brown, Macromolecules 31, 1889 (1998).

    Article  Google Scholar 

  9. T. Nicolai and W. Brown, in Light Scattering: Principles and Development, Ed. by W. Brown (Clarendon Press, New York; Oxford Univ. Press, Oxford, 1996).

  10. A. N. Semenov, Phys. A (Amsterdam) 166, 263 (1990).

    Article  CAS  Google Scholar 

  11. N. Boudenne, S. H. Anastasiadis, G. Fytas, M. Xenidou, N. Hadjichristidis, A. N. Semenov, and G. Fleischer, J. Phys. Rev. Lett. 77, 506 (1996).

    Article  CAS  Google Scholar 

  12. E. A. Litmanovich, E. V. Kotova, and V. V. Efremov, Colloid Polym. Sci. 297, 371 (2019).

    Article  CAS  Google Scholar 

  13. P. G. De Gennes, J. Chem. Phys. 55, 572 (1971).

    Article  Google Scholar 

  14. M. Doi and S. F. Edwards, J. Chem. Soc., Faraday Trans. 2 74, 1789 (1978).

    Article  CAS  Google Scholar 

  15. D. C. Boris and R. H. Colby, Macromolecules 1, 5746 (1988).

    Google Scholar 

  16. R. C. W. Liu, Y. Morishima, and F. M. Winnik, Polymer 34, 340 (2002).

    Article  CAS  Google Scholar 

  17. V. E. Dreval’, G. B. Vasil’ev, E. A. Litmanovich, and V. G. Kulichikhin, Polym. Sci., Ser. A 50, 751 (2008).

    Article  Google Scholar 

  18. J.-P. Chapel and J.-F. Berret, Curr. Opin. Colloid Interface Sci. 17, 97 (2012).

    Article  CAS  Google Scholar 

  19. H. Bu, A.-L. Kjoniksen, K. D. Knudsen, and B. Nyström, Colloids Surf., A 293, 105 (2007).

    Article  CAS  Google Scholar 

  20. Q. Wu, Y. Shangguan, M. Du, J. Zhou, and Q. Zheng, J. Colloid Interface Sci. 339, 236 (2009).

    Article  CAS  Google Scholar 

  21. Q. Wu, M. Du, Y. Shangguan, J. Zhou, and Q. Zheng, Colloids Surf., A 332, 13 (2009).

    Article  CAS  Google Scholar 

  22. A. F. Thünemann, M. Müller, H. Dautzenberg, J. F. Joanny, and H. Löwen, Adv. Polym. Sci. 166, 113 (2004).

    Article  Google Scholar 

  23. A. D. Antipina, V. Yu. Baranovskii, I. M. Papisov, and V. A. Kabanov, Vysokomol. Soedin., Ser. A 14, 941 (1972).

    CAS  Google Scholar 

  24. E. A. Litmanovich, E. V. Chernikova, G. V. Stoychev, and S. O. Zakharchenko, Macromolecules 43, 6871 (2010).

    Article  CAS  Google Scholar 

  25. E. A. Litmanovich, S. O. Zakharchenko, G. V. Stoychev, and A. B. Zezin, Polym. Sci., Ser. A 51, 616 (2009).

    Article  Google Scholar 

  26. K. Bergfeldt, L. Piculell, and F. Tjerneld, Macromolecules 28, 3360 (1995).

    Article  CAS  Google Scholar 

  27. C. O. M’Bareck, Q. T. Nguyen, M. Metayer, J. M. Saiter, and M. R. Garda, Polymer 45, 4181 (2004).

    Article  Google Scholar 

  28. A. Tager, Physical Chemistry of Polymers (MIR, Moscow, 1978) [in Russian].

    Google Scholar 

  29. E. Di Cola, T. A. Waigh, and R. H. Colby, J. Polym. Sci., Part B: Polym. Phys. 45, 774 (2007).

    Article  CAS  Google Scholar 

  30. T. A. Kavassalis and J. Noolandi, Macromolecules 22, 2709 (1989).

    Article  CAS  Google Scholar 

  31. Y. H. Lin, Macromolecules 20, 3080 (1987).

    Article  CAS  Google Scholar 

  32. G. M. Bartenev and L. A. Vishnitskaya, Vysokomol. Soedin. 6, 751 (1964).

    CAS  Google Scholar 

  33. G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers (Khimiya, Moscow, 1980) [in Russian].

    Book  Google Scholar 

  34. H. A. Barnes, A Handbook of Elementary Rheology (Univ. Wales Inst. Non-Newtonian Fluid Mech., Aberystwyth, 2000).

    Google Scholar 

  35. A. B. Marciel, S. Srivastava, and M. V. Tirrell, Soft Matter 14, 2454 (2018).

    Article  CAS  Google Scholar 

  36. S. Tang, M. Wang, and B. D. Olsen, J. Am. Chem. Soc. 11, 3946 (2015).

    Article  Google Scholar 

  37. S. Onogi and T. Matsumoto, Polym. Eng. Rev. 1, 45 (1981).

    CAS  Google Scholar 

  38. V. G. Kulichikhin, S. O. Ilyin, M. V. Mironova, A. K. Berkovich, I. E. Nifant’ev, and A. Ya. Malkin, Adv. Polym. Technol. 37, 1076 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Litmanovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litmanovich, E.A., Efremov, V.V. Rheological Properties of Poly(acrylic acid) Complexes with Poly(sodium styrenesulfonate) in Semidilute Aqueous Solutions. Polym. Sci. Ser. A 61, 743–753 (2019). https://doi.org/10.1134/S0965545X19060051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19060051

Navigation