Skip to main content
Log in

Thermal and Electroactive Shape Memory Behaviors of Polyvinyl alcohol/Short Carbon Fiber Composites

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The properties of electroactive shape memory composites fabricated from polyvinyl alcohol filled with short carbon fibers were studied. Short carbon fibers were used to induce the conductivity of the polyvinyl alcohol. It was shown that when the content of the filler was higher than the percolation threshold of 4%, it formed the conductive network in the polymer matrix. The conductivity increased with the increase of the filler content and electrical properties became more stable. At the same time, the glass transition temperature dropped from 68°C for neat PVA to 53°C for composites. The mechanical properties of the composites depended on the filler content non-monotonically, with a maximum at ~6%. The composites exhibited a robust shape recovery performance under the conductive conditions, and the recovery time could be controlled precisely. The study could offer the possibility for the development of electroactive shape memory composites based on polymer matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. Calvo-Correas, A. Shirole, F. Crippa, A. Fink, C. Weder, M. A. Corcuera, and A. Eceiza, Mater. Sci. Eng., C 97, 658 (2019).

    Article  CAS  Google Scholar 

  2. P. Zhu, W. Yang, R. Wang, S. Gao, B. Li, and Q. Li, ACS Appl. Mater. Interfaces 10, 36435 (2018).

    Article  CAS  Google Scholar 

  3. H. Wang, L. Chen, L. Fang, L. Li, J. Fang, C. Lu, and Z. Xu, Mater. Des. 160, 194 (2018).

    Article  CAS  Google Scholar 

  4. Y.-C. Chung, J. W. Choi, J. M. Jung, and B. C. Chun, Fibers Polym. 10, 743 (2009).

    Article  CAS  Google Scholar 

  5. H. Zhuo, Z. Mei, H. Chen, and S. Chen, Polymer 148, 119 (2018).

    Article  CAS  Google Scholar 

  6. V. A.Beloshenko, Y. E. Beigel’zimer, V. N. Varyukhin, and Y. V. Voznyak, Polym. Sci., Ser. A 47, 723 (2005).

    Google Scholar 

  7. Y. Xie, Y. Meng, W. Wang, E. Zhang, J. Leng, and Q. Pei, Adv. Funct. Mater. 28, 1802430 (2018).

    Article  Google Scholar 

  8. H. Chen, H. Xia, Y. Qiu, Z. Xu, and Q.-Q. Ni, Compos. Sci. Technol. 163, 123 (2018).

    Article  CAS  Google Scholar 

  9. X. Xu, P. Fan, J. Ren, Y. Cheng, J. Ren, J. Zhao, and R. Song, Compos. Sci. Technol. 168, 255 (2018).

    Article  CAS  Google Scholar 

  10. F. Li, F. Scarpa, X. Lan, L. Liu, Y. Liu, and J. Leng, Composites, Part A 116, 169 (2019).

    Article  CAS  Google Scholar 

  11. H. Sun, H. Liu, and Y. Wu, Appl. Surf. Sci. 467–468, 554 (2019).

    Article  Google Scholar 

  12. E. Bilgin Simsek, D. Saloglu, N. Ozcan, I. Novak, and D. Berek, J. Taiwan Inst. Chem. Eng. 70, 291 (2017).

    CAS  Google Scholar 

  13. H. M. C. M. Herath, J. A. Epaarachchi, M. M. Islam, W. Al-Azzawi, J. Leng, and F. Zhang, Compos. Sci. Technol. 167, 206 (2018).

    Article  CAS  Google Scholar 

  14. H. Xie, L. Li, X.-Y. Deng, C.-Y. Cheng, K.-K. Yang, and Y.-Z. Wang, Compos. Sci. Technol. 157, 202 (2018).

    Article  CAS  Google Scholar 

  15. W. Zhang, A. A. Dehghani-Sanij, and R. S. Blackburn, J. Mater. Sci. 42, 3408 (2007).

    Article  CAS  Google Scholar 

  16. N. C. Das, T. K. Chaki, and D. Khastgir, Carbon 40, 807(2002).

    Article  CAS  Google Scholar 

  17. Y. Mao, J. M. Robertson, X. Mu, P. T. Mather, and H. Jerry Qi, J. Mech. Phys. Solids 85, 219 (2015).

    Article  CAS  Google Scholar 

  18. M. Babaahmadi, M. Sabzi, G. R. Mahdavinia, and M. Keramati, Polymer 112, 26 (2017).

    Article  CAS  Google Scholar 

  19. E. A. DiMarzio and J. H. Gibbs, J. Chem. Phys. 28, 807 (1958).

    Article  CAS  Google Scholar 

  20. G. Zhou, H. Zhang, S. Xu, X. Gui, H. Wei, J. Leng, N. Koratkar, and J. Zhong, Sci. Rep. 6, 24148 (2016).

    Article  Google Scholar 

  21. M. Sumita, K. Sakata, Y. Hayakawa, S. Asai, K. Miyasaka, and M. Tanemura, Colloid Polym. Sci. 270, 134 (1992).

    Article  CAS  Google Scholar 

  22. Z. Tang, D. Sun, D. Yang, B. Guo, L. Zhang, and D. Jia, Compos. Sci. Technol. 75, 15 (2013).

    Article  CAS  Google Scholar 

  23. G. T. Mohanraj, T. K. Chaki, A. Chakraborty, and D. Khastgir, J. Appl. Polym. Sci. 92, 2179 (2004).

    Article  CAS  Google Scholar 

  24. J. Leng, X. Lan, Y. Liu, and S. Du, Smart Mater. Struct. 18, 074003(2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liulan Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liulan Lin, Zhou, Q. & Li, M. Thermal and Electroactive Shape Memory Behaviors of Polyvinyl alcohol/Short Carbon Fiber Composites. Polym. Sci. Ser. A 61, 913–921 (2019). https://doi.org/10.1134/S0965545X1906004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X1906004X

Navigation