Skip to main content
Log in

A Theoretical Investigation on the pH Responses of Strong Polyelectrolyte Brushes

  • THEORY AND SIMULATION
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The pH responsive properties of poly[2-(methacryloyloxy)ethyl trimethylammonium chloride] (PMETAC) brushes have been manifested in an experiment carried out by Liu et al. (2017). In this paper, we have employed a molecular theory to study the pH response of strong polyelectrolyte brushes (SPBs), by considering both strong polyelectrolyte-OH (P–O) hydrogen bonds and polyelectrolyte-counterions (P–C) bonds and their explicit coupling to the SPB conformation. It is found that, when at lower salt concentrations, the combination of P–O hydrogen bonds and P–C bonds results in the pH-responsive properties of a SPB, which are governed by the formation of interchain hydrogen bonds, while at higher salt concentrations, the pH response of the SPB is suppressed by the effect of salt ions. This finding agrees well with the experimental observation. We also investigate the OH-mediated bridging effect on the structure of a SPB. Based on this theoretical perspective, we predict that the pH response of a SPB will depend on the identity of salt, and the OH-mediated bridging interactions can induce a vertically phase segregation in a SPB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. U. Raviv, S. Giasson, N. Kampf, G. J. Fohy, R. Jerome, and J, Klein, Nature 425, 163 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. J. Ruhe, M. Ballauff, M. Biesalski, P. Dziezok, F.Grohn, D. Johannsmann, N. Houbenov, N. Hugenberg, R. Konradi, S. Minko, M. Motornov, R. R. Netz, M. Schmidt, C. Seidel, M. Stamm, T. Stephan, D. Usov, and H. N. Zhang, Adv. Polym. Sci. 165, 79 (2004).

    Article  CAS  Google Scholar 

  3. X. Zhu, J. DeGraaf, F. M. Winnik, and D. Leckband. Langmuir 20, 10656 (2004).

    Google Scholar 

  4. A. Wittemann, B. Haupt, and M. Ballauff, Phys. Chem. Chem. Phys. 5, 1671 (2003).

    Article  CAS  Google Scholar 

  5. T. J. Su, D. A. Styrkas, R. K. Thomas, F. L. Baines, N. C. Billingham, and S. P. Armes, Macromolecules 29, 6892 (1996).

    Article  CAS  Google Scholar 

  6. H. Ahrens, H. Forster, and C. A. Helm, Phys. Rev. Lett. 81, 4172 (1998).

    Article  CAS  Google Scholar 

  7. H. Yim, M. S. Kent, D. Huber, S. Satija, J. Majewski, and G. S. Smith, Macromolecules 36, 5244 (2003).

    Article  CAS  Google Scholar 

  8. E. Mouri, K. Matsumoto, H. Matsuoka, and N. Torikai, Langmuir 21, 1840 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. P. A. Pincus, Macromolecules 24, 2912 (1991).

    Article  CAS  Google Scholar 

  10. R. Israels, F. A. Leermarkers, M. G. Fleer, and E. B. Zhulina, Macromolecules 27, 3249 (1994).

    Article  CAS  Google Scholar 

  11. W. D. Tian and Y. Q. Ma, Macromolecules 43, 1575(2010).

    Article  CAS  Google Scholar 

  12. C. H. Tong, J. Chem. Phys. 143, 054903 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. I. O. Lebedeva, E. B. Zhulina, and O. V. Borisov, J. Chem. Phys. 146, 214901 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. E. B. Zhulina, J. K. Wolterink, and O. V. Borisov, Macromolecules 33, 4945(2000).

    Article  CAS  Google Scholar 

  15. Y. Mei, K. Lauterbach, M. Hoffmann, O. V. Borisov, M. Ballauff, and A. Jusufi, Phys. Rev. Lett. 97, 158301 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. G. J. Dunderdale and J. P. A. Fairclough, Langmuir 29, 3628 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. J. L. Barrat and J. F. Joanny, Adv. Chem. Phys. 94, 1 (1996).

    CAS  Google Scholar 

  18. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551(2006).

    Article  CAS  PubMed  Google Scholar 

  19. I. Cobo, M. Li, B. S. Sumerlin, and S. Perrier, Nat. Mater. 14, 143 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. H. Zhang and J. Rulhe, Macromolecules 36, 6593 (2003).

    Article  CAS  Google Scholar 

  21. B. Wu, X. W. Wang, J. Yang, Z. Hua, K. Z. Tian, R. Kou, J. Zhang, S. Ye, Y. Luo, V. S. J. Craig, G. Z. Zhang and G. M. Liu, Sci. Adv. 2, e16005791 (2016).

    Google Scholar 

  22. J. Zhang, R. Kou and G. M. Liu, Langmuir 33, 6838 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. E. B. Zhulina, T. M. Birshtein, and V. Borisov, Macromolecules 28, 1491 (1996).

    Article  Google Scholar 

  24. V. Borisov, E. B. Zhulina, and T. M. Birshtein, Macromolecules 27, 4795 (1994).

    Article  CAS  Google Scholar 

  25. Y. A. Budkov, A. L. Kolesnikov, E. A. Nogovitsyn, and M. G. Kiselev, Polym. Sci., Ser. A 56, 697 (2014).

    Article  CAS  Google Scholar 

  26. Y. A. Budkov, A. L. Kolesnikov, N. Georgi, E. A. Nogovitsyn, and M. G. Kiselev, J. Chem. Phys. 142, 174901 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Y. A Budkov and M. G. Kiselev, J. Phys.: Condens. Matter 30, 043001 (2018).

    Google Scholar 

  28. I. Szleifer and M. A. Carignano, Adv. Chem. Phys. 94, 165(1996).

    CAS  Google Scholar 

  29. C. L. Ren, R. J. Nap, and I. Szleifer, J. Phys. Chem. B 112, 16238 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Morochnik, R. J. Nap, G. A. Ameer, and I. Szleifer, Soft Matter 13, 6322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. C. L. Ren, W. D. Tian, I. Szleifer, and Y. Q. Ma, Macromolecules 44, 1719 (2011).

    Article  CAS  Google Scholar 

  32. B. K. Brettmann, N. Laugel, N. Hoffmann, P. Pincus, and M Tirrell, J. Polym. Sci., Part A: Polym. Chem. 54, 284 (2016).

    Article  CAS  Google Scholar 

  33. R. Kou, J. Zhang, T. Wang, and G. M. Liu, Langmuir 31, 10461 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. J. P. Mahalik, S. G. Bobby, and R. Kumar, Macromolecules 49, 7096 (2016).

    Article  CAS  Google Scholar 

  35. E. Y. Kramarenko, I. Y. Erukhimovich, A. R. Khokhlov, Macromol. Theory Simul. 11, 462 (2002).

    Article  CAS  Google Scholar 

  36. Y. D. Gordievskaya, Y. A. Budkov, and E. Y. Kramarenko, Soft Matter 14, 3232 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Y. A. Budkov, N. N. Kalikin, and A. L. Kolesnikov, Eur. Phys. J. E: Soft Matter Biol. Phys. 40, 47 (2017).

    Article  CAS  Google Scholar 

  38. I. E. Dunlop, R. K. Thomas, S. Titmus, V. Osborne, S. Edmondson, W. T. S. Huck, and J. Klein, Langmuir 28, 3187 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Dr. Chun-Lai Ren for her valuable advices and suggestions. This work was supported by Chinese National Science Foundation through grants no. 21764015, and Xinjiang Natural Science Foundation no. 2016D01C380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Zhao.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X.J., Gao, Z.F. A Theoretical Investigation on the pH Responses of Strong Polyelectrolyte Brushes. Polym. Sci. Ser. A 61, 397–406 (2019). https://doi.org/10.1134/S0965545X19030209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19030209

Navigation