Advertisement

Polymer Science, Series A

, Volume 60, Issue 5, pp 683–690 | Cite as

Kinetics of Curing of Epoxy Oligomer by Diaminodiphenyl Sulfone: Rheology and Calorimetry

  • M. P. ArininaEmail author
  • V. A. Kostenko
  • I. Yu. Gorbunova
  • S. O. Il’in
  • A. Ya. Malkin
Rheology
  • 23 Downloads

Abstract

Diaminodiphenyl sulfone is used as a curing agent to obtain an epoxy-resin-based binder with improved thermal stability. The kinetics of curing of this composition is studied by rheokinetic and calorimetric methods. It is shown that complete conversion is attained at a temperature of 200°С or higher. The rate of viscosity increase in the course of time in curing under flow conditions does not depend on the shear rate; the viscosity changes monotonically. The curing reaction occurs in the homogeneous mode without separation of a crosslinked polymer; it is described by a second-order equation with self-deceleration at low temperatures. The rheokinetic characteristics and temperature dependences of kinetic parameters of the process are determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. H. Winter and F. Chambon, J. Rheol. 30 (2), 367 (1986).CrossRefGoogle Scholar
  2. 2.
    H. H. Winter, Polym. Eng. Sci. 27 (22), 1698 (1987).CrossRefGoogle Scholar
  3. 3.
    R. J. J. Williams, B. A. Rosenverg, and J.-P. Pascault, Adv. Polym. Sci. 128, 97 (1997).Google Scholar
  4. 4.
    G. R. Palmese and J. K. Gillham, J. Appl. Polym. Sci. 34 (5), 1925 (1987).CrossRefGoogle Scholar
  5. 5.
    A. Ya. Malkin and S. G. Kulichikhin, Adv. Polym. Sci. 101, 217 (1991).CrossRefGoogle Scholar
  6. 6.
    A. Ya. Malkin, M. L. Kerber, and I. Yu. Gorbunova, Polym. Eng. Sci. 45 (1), 95 (2005).CrossRefGoogle Scholar
  7. 7.
    S. G. Prolongo, M. R. Gude, and A. Urena, J. Nanotechnol. 2010, Article ID 420432 (2010).Google Scholar
  8. 8.
    Gh. M. Roudsari, A. K. Mohanty, and M. Manjusri Misra, ACS Sustainable Chem. Eng. 2, 2111 (2014).CrossRefGoogle Scholar
  9. 9.
    J. Cheng, J. Li, and J. Y. Zhang, eXPRESS Polym. Lett. 3 (8), 501 (2009).CrossRefGoogle Scholar
  10. 10.
    M. G. González, J. C. Cabanelas, and J. Baselgam, in Infrared Spectroscopy-Materials Science, Engineering and Technology, Ed. by T. Theophanides (InTech, Rijeka, 2012), Chap. 13.Google Scholar
  11. 11.
    A. Ya. Malkin, S. G. Kulichikhin, M. L. Kerber, I. Yu. Gorbunova, and E. A. Murashova, Polym. Eng. Sci. 37 (8), 1322 (1997).CrossRefGoogle Scholar
  12. 12.
    F. Lapique and K. Redford, Int. J. Adhes. Adhes. 22 (4), 337 (2002).CrossRefGoogle Scholar
  13. 13.
    W. Brostow and N. M. Glass, Mater. Res. Innovations 7, 125 (2003).CrossRefGoogle Scholar
  14. 14.
    E. A. Dzhavadyan, L. L. Ivanova, L. A. Dudina, P. P. Kushch, V. I. Irzhak, and B. A. Rozenberg, Mekh. Kompoz. Mater., No. 6, 1120 (1986).Google Scholar
  15. 15.
    E. A. Dzhavadyan, E. N. Raspopova, V. I. Irzhak, and B. A. Rozenberg, Vysokomol. Soedin., Ser. B 36 (5), 833 (1994).Google Scholar
  16. 16.
    T. I. Ponomareva, V. N. Korotkov, E. A. Dzhavadyan, and B. A. Rozenberg, Vysokomol. Soedin., Ser. A 41 (5), 823 (1999).Google Scholar
  17. 17.
    T. Vidil, F. Tournilhac, S. Musso, A. Robisson, and L. Leibler, Prog. Polym. Sci. 62, 126 (2016).CrossRefGoogle Scholar
  18. 18.
    A. V. Krestinin and A. P. Kharitonov, Vysokomol. Soedin., Ser. B 60 (4) (2018) (in press).Google Scholar
  19. 19.
    N. Yu. Budylin, A. V. Shapagin, R. R. Khasbiullin, and A. E. Chalykh, Butlerovskie Soobshch. 36 (10), 107 (2013).Google Scholar
  20. 20.
    N. A. St John and G. A. George, Prog. Polym. Sci. 19, 755 (1994).CrossRefGoogle Scholar
  21. 21.
    S. R. White, P. T. Mather, and M. J. Smith, Polym. Eng. Sci. 42, 51 (2002).CrossRefGoogle Scholar
  22. 22.
    K. Dušek, Macromol. Mater. Eng. 240 (1), 1 (1996).Google Scholar
  23. 23.
    K. Dušek, Adv. Polym. Sci. 78, 3 (1986).Google Scholar
  24. 24.
    M. Adam, M. Delsanti, R. Okasha, and D. Hild, J. Phys. Lett. 40 (20), 539 (1979).CrossRefGoogle Scholar
  25. 25.
    G. Nikolic, S. Zlatkovic, M. Cakic, S. Cakic, C. Lacnjevac, and Z. Rajic, Sensors 10, 684 (2010).CrossRefPubMedGoogle Scholar
  26. 26.
    S. Sun, P. Sun, and D. Liu, Eur. Polym. J. 41, 913 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. P. Arinina
    • 1
    Email author
  • V. A. Kostenko
    • 2
  • I. Yu. Gorbunova
    • 2
  • S. O. Il’in
    • 1
  • A. Ya. Malkin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Mendeleev University of Chemical TechnologyMoscowRussia

Personalised recommendations