Skip to main content
Log in

Hydrophobic Properties of Thin Films of Comb-Shaped Perfluorohexylethyl Methacrylate-Polydimethylsiloxane Copolymers Deposited from Supercritical Carbon Dioxide Solutions

  • Structure and Properties
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Comb-shaped copolymers of perfluorohexylethyl methacrylate and methacryloxypropyl-terminated polydimethylsiloxane are synthesized by radical polymerization in supercritical carbon dioxide, solubility of the copolymers in supercritical carbon dioxide is studied, and hydrophobic properties of thin films obtained via precipitation of the copolymers from trifluorotrichloroethane and supercritical carbon dioxide solutions on substrates are examined. On the basis of water and dimethyl sulfoxide contact angle measurements, the specific free surface energy of the formed films is calculated. It is shown that the thin films of the copolymers have a lower surface energy and are characterized by a smaller water contact angle hysteresis than the films based on homopolymer poly(perfluorohexylethyl methacrylate). A comparative testing of coatings based on the homopolymer and copolymer deposited from solutions in supercritical carbon dioxide on the surface of nylon fabrics is performed. It is found that copolymer-coated fabrics have on average higher water contact angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Barthlott and C. Neinhuis, Planta 202 (1), 1 (1997).

    Article  CAS  Google Scholar 

  2. D. Quéré, Annu. Rev. Mater. Res. 38 (1), 71 (2008).

    Article  CAS  Google Scholar 

  3. Z. Chu and S. Seeger, Chem. Soc. Rev. 43, 2784 (2014).

    Article  CAS  Google Scholar 

  4. L. Wang and T. J. McCarthy, Angew. Chem., Int. Ed. Engl. 55 (1), 244 (2016).

    Article  CAS  Google Scholar 

  5. L. Gao and T. J. McCarthy, Langmuir 22 (7), 2966 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Z. Cheng, M. Du, H. Lai, N. Zhang, K. Sun, Nanoscale 5 (7), 2776 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. M. Im, H. Im, J.-H. Lee, J.-B. Yoon, and Y.-K. Choi, Soft Matter 6 (7), 1401 (2010).

    Article  CAS  Google Scholar 

  8. E. J. Park, B. R. Kim, D. K. Park, S. W. Han, D. H. Kim, W. S. Yun, and Y. D. Kim, RSC Adv. 5 (51), 40595 (2015).

    Article  CAS  Google Scholar 

  9. T.-S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, and J. Aizenberg, Nature 477 (7365), 443 (2011).

    Article  CAS  Google Scholar 

  10. X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, and J. Aizenberg, Nat. Mater. 12 (6), 529 (2013).

    Article  CAS  Google Scholar 

  11. A. Grinthal and J. Aizenberg, Chem. Mater. 26 (1), 698 (2014).

    Article  CAS  Google Scholar 

  12. J. W. Krumpfer and T. J. McCarthy, Langmuir 27 (18), 11514 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. D. F. Cheng, C. Urata, M. Yagihashi, and A. Hozumi, Angew. Chem. 124 (12), 3010 (2012).

    Article  Google Scholar 

  14. V. V. Zefirov, N. A. Lubimtsev, A. I. Stakhanov, I. V. Elmanovich, M. S. Kondratenko, B. V. Lokshin, M. O. Gallyamov, and A. R. Khokhlov, J. Supercrit. Fluids 133 (1), 30 (2017).

    Google Scholar 

  15. J. M. DeSimone, Z. Guan, and C. S. Elsbernd, Science 257 (5072), 945 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. H. Shiho and J. M. DeSimone, J. Polym. Sci., Part A: Polym. Chem. 38, 1139 (2000).

    Article  CAS  Google Scholar 

  17. S. Mawson, K. P. Johnston, J. R. Combes, and J. M. DeSimone, Macromolecules 28 (9), 3182 (1995).

    Article  CAS  Google Scholar 

  18. A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, Colloids. Surf., A 364 (1–3), 72 (2010).

    Article  CAS  Google Scholar 

  19. D. P. Subedi, Himalaya Phys. 2 (1), 1 (2011).

    Article  Google Scholar 

  20. F. M. Fowkes, Ind. Eng. Chem. 56 (12), 40 (1964).

    Article  CAS  Google Scholar 

  21. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci. 13 (8), 1741 (1969).

    Article  CAS  Google Scholar 

  22. E. Girard, T. Tassaing, J.-D. Marty, and M. Destarac, Chem. Rev. 116 (7), 4125 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. A. Falsafi, S. Mangipudi, and M. J. Owen, Physical Properties of Polymers Handbook (Springer, New York, 2007).

    Google Scholar 

  24. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, Langmuir 15 (7), 4321 (1999).

    Article  CAS  Google Scholar 

  25. H. Yamaguchi, P. Gin, H. Arita, M. Kobayashi, S. Bennett, S. K. Satija, M. Asada, T. Koga, and A. Takahara, Rsc Adv. 3 (14), 4778 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kondratenko.

Additional information

Original Russian Text © M.S. Kondratenko, S.A. Anisenko, I.V. Elmanovich, A.I. Stakhanov, M.O. Gallyamov, A.R. Khokhlov, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2018, Vol. 60, No. 4, pp. 275–283.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratenko, M.S., Anisenko, S.A., Elmanovich, I.V. et al. Hydrophobic Properties of Thin Films of Comb-Shaped Perfluorohexylethyl Methacrylate-Polydimethylsiloxane Copolymers Deposited from Supercritical Carbon Dioxide Solutions. Polym. Sci. Ser. A 60, 451–458 (2018). https://doi.org/10.1134/S0965545X18040041

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X18040041

Navigation