Behavior of a Thermosensitive Star-Shaped Polymer with Polyethyloxazoline-block-Polyisopropyloxazoline Copolymer Arms

Abstract

The aqueous solutions of the star-shaped eight-arm polymer in which arms consist of the block copolymer of poly(2-ethyl-2-oxazoline) and poly(2-isopropyl-2-oxazoline) and a more hydrophilic poly(2- ethyl-2-oxazoline) is attached to the calix[8]arene core are studied by light scattering and turbidimetry. For the sake of comparison, the linear block copolymer modeling arms of the star-shaped polymer is examined. The temperature and concentration dependences of light scattering intensity and optical transmission, the hydrodynamic radii of particles occurring in solutions, and their fraction in solution are determined. At room temperature, solutions of the linear copolymer are molecularly dispersed because of a high hydrophilicity of blocks and aggregates are formed in solutions of the star-shaped polymer as a result of interaction between hydrophobic calix[8]arene cores. As the temperature grows, the dehydration of poly(2-isopropyl-2-oxazoline) units initially occurs and entails both the compaction and aggregation of star-shaped molecules. At higher temperatures, the dehydration of poly(2-ethyl-2-oxazoline) leading to phase separation begins. The temperature of phase separation grows upon dilution. A high intramolecular density of the star-shaped polymer is responsible for a marked deceleration of self-organization processes. This effect is especially pronounced in the vicinity of the phase-separation temperature.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. X. Viegas, M. D. Bentley, J. M. Harris, Z. Fang, K. Yoon, B. Dizman, R. Weimer, A. Mero, G. Pasut, and F. M. Veronese, Bioconjugate Chem. 22 (5), 976 (2011).

    Article  CAS  Google Scholar 

  2. 2.

    E. Rossegger, V. Schenk, and F. Wiesbrock, Polymers 5 (3), 956 (2013).

    Article  CAS  Google Scholar 

  3. 3.

    L. Tauhardt, K. Kempe, M. Gottschaldt, and U. S. Schubert, Chem. Soc. Rev. 42 (20), 7998 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    R. Hoogenboom and H. Schlaad, Polym. Chem. 8 (1), 24 (2017).

    Article  CAS  Google Scholar 

  5. 5.

    H. Uyama and S. Kobayashi, Chem. Lett. 21 (9), 1643 (1992).

    Article  Google Scholar 

  6. 6.

    P. Y. Lin, C. Clash, E. M. Pearce, T. K. Kwei, and M. A. Aponte, J. Polym. Sci., Polym. Phys. Ed. 26 (3), 603 (1988).

    Article  CAS  Google Scholar 

  7. 7.

    R. Obeid, F. Tanaka, and F. M. Winnik, Macromolecules 42 (15), 5818 (2009).

    Article  CAS  Google Scholar 

  8. 8.

    R. Hoogenboom, M. W. M. Fijten, H. M. L. Thijs, B. M. van Lankvelt, and U. S. Schubert, Des. Monomers Polym. 8 (6), 659 (2005).

    Article  CAS  Google Scholar 

  9. 9.

    J.-S. Park and K. Kataoka, Macromolecules 39 (19), 6622 (2006).

    Article  CAS  Google Scholar 

  10. 10.

    J.-S. Park and K. Kataoka, Macromolecules 40 (10), 3599 (2007).

    Article  CAS  Google Scholar 

  11. 11.

    S. Huber and R. Jordan, Colloid Polym. Sci. 286 (4), 395 (2008).

    Article  CAS  Google Scholar 

  12. 12.

    H. M. L. Lambermont-Thijs, R. Hoogenboom, C.-A. Fustin, C. Bomal-D’Haese, J.-F. Gohy, and U. S. Schubert, J. Polym. Sci., Part A: Polym. Chem. 47 (2), 515 (2009).

    Article  CAS  Google Scholar 

  13. 13.

    M. Glassner, K. Lava, V. R. de la Rosa, and R. Hoogenboom, J. Polym. Sci., Part A: Polym. Chem. 52 (21), 3118 (2014).

    Article  CAS  Google Scholar 

  14. 14.

    N. Zhang, R. Luxenhofer, and R. Jordan, Macromol. Chem. Phys. 213 (18), 1963 (2012).

    Article  CAS  Google Scholar 

  15. 15.

    L. T. T. Trinh, H. M. L. Lambermont-Thijs, U. S. Schubert, R. Hoogenboom, and A. L. Kjoniksen, Macromolecules 45 (10), 4337 (2012).

    Article  CAS  Google Scholar 

  16. 16.

    R. Takahashi, T. Sato, K. Terao, X.-P. Qiu, and F. M. Winnik, Macromolecules 45 (15), 6111 (2012).

    Article  CAS  Google Scholar 

  17. 17.

    K. Ishizu, K. Tsubaki, A. Mori, and S. Uchida, Prog. Polym. Sci. 28 (2003).

  18. 18.

    S. S. Sheiko, B. S. Sumerlin, and M. Matyjaszewski, Prog. Polym. Sci. 33 (7), 759 (2008).

    Article  CAS  Google Scholar 

  19. 19.

    B. I. Voit and A. Lederer, Chem. Rev. 109 (11), 5924 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    A. P. Filippov, E. V. Belyaeva, E. B. Tarabukina, and A. I. Amirova, Polym. Sci., Ser. C 53 (1), 107 (2011).

    Article  CAS  Google Scholar 

  21. 21.

    A. Schmalz, M. Hanisch, H. Schmalz, and A. H. E. Müller, Polymer 51 (6), 1213 (2010).

    Article  CAS  Google Scholar 

  22. 22.

    L. Ma, R. G. Liu, J. J. Tan, D. Q. Wang, X. Jin, H. L. Kang, M. Wu, and Y. Huang, Langmuir 26 (11), 8697 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    F. Xu, S. Z. Zheng, and Y. L. Luo, J. Polym. Sci., Part A: Polym. Chem. 51 (20), 4429 (2013).

    Article  CAS  Google Scholar 

  24. 24.

    K. Sui, X. Zhao, Z. Wu, Y. Xia, H. Liang, and Y. Li, Langmuir 28 (1), 153 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    M. P. Kurlykin, A. E. Bursian, and A. V. Tenkovtsev, Polym. Sci., Ser. B 59 (4), 157 (2017).

    Article  CAS  Google Scholar 

  26. 26.

    A. A. Kudryavtseva, M. P. Kurlykin, E. B. Tarabukina, A. V. Tenkovtsev, and A. P. Filippov, Int. J. Polym. Anal. Charact. 22 (6), 526 (2017).

    Article  CAS  Google Scholar 

  27. 27.

    D. Kuckling and A. Wycisk, J. Polym. Sci., Part A: Polym. Chem. 51 (14), 2980 (2013).

    Article  CAS  Google Scholar 

  28. 28.

    Y. Y. Liu, Y. B. Zhong, J. K. Nan, and W. Tian, Macromolecules 43 (24), 10221 (2010).

    Article  CAS  Google Scholar 

  29. 29.

    A. Kowalczuk, J. Kronek, K. Bosowska, B. Trzebicka, and A. Dworak, Polym. Int. 60 (7), 1001 (2011).

    Article  CAS  Google Scholar 

  30. 30.

    H. M. L. Lambermont-Thijs, M. W. M. Fijten, U. S. Schubert, and R. Hoogenboom, Aust. J. Chem. 64 (8), 1026 (2011).

    Article  CAS  Google Scholar 

  31. 31.

    G. Pereira, C. Huin, S. Morariu, V. Bennevault-Celton, and P. Guegan, Aust. J. Chem. 65 (8), 1145 (2012).

    Article  CAS  Google Scholar 

  32. 32.

    A. I. Amirova, M. M. Dudkina, A. V. Tenkovtsev, and A. P. Filippov, Colloid Polym. Sci. 293 (1), 239 (2015).

    Article  CAS  Google Scholar 

  33. 33.

    A. I. Amirova, O. V. Golub, T. U. Kirila, A. B. Razina, A. V. Tenkovtsev, and A. P. Filippov, Soft Mater. 14 (1), 15 (2016).

    Article  CAS  Google Scholar 

  34. 34.

    A. I. Amirova, O. V. Golub, T. U. Kirila, A. B. Razina, A. V. Tenkovtsev, and A. P. Filippov, Colloid Polym. Sci. 294 (6), 947 (2016).

    Article  CAS  Google Scholar 

  35. 35.

    A. I. Amirova, O. V. Golub, T. U. Kirila, A. B. Razina, A. V. Tenkovtsev, and A. P. Filippov, Colloid Polym. Sci. 295 (1), 117 (2017).

    Article  CAS  Google Scholar 

  36. 36.

    A. I. Amirova, S. Rodchenko, Z. Makhmudova, G. Cherkaev, S. Milenin, E. Tatarinova, M. Kurlykin, A. Tenkovtsev, and A. Filippov, Macromol. Chem. Phys. 218 (4), (2017). doi 10.1002/macp.201600452

    Google Scholar 

  37. 37.

    T. U. Kirila, M. P. Kurlykin, A. V. Tenkovtsev, and A. P. Filippov, Polym. Sci. 59 (6), 523 (2017).

    Google Scholar 

  38. 38.

    M. P. Kurlykin, A. E. Bursian, M. M. Dudkina, and A. V. Tenkovtsev, Fibre Chem 47 (3), 144 (2015).

    Article  CAS  Google Scholar 

  39. 39.

    V. N. Tsvetkov, Rigid-Chain Polymers (Plenum Press, New York, 1989).

    Google Scholar 

  40. 40.

    A. S. Sasina, N. V. Zakharova, A. P. Filippov, T. K. Meleshko, and A. V. Yakimansky, Polym. Sci., Ser. B 59 (3), 281 (2017).

    Google Scholar 

  41. 41.

    Y. Katsumoto, A. Tsuchiizu, X. P. Qiu, and F. M. Winnik, Macromolecules 45 (8), 3531 (2012).

    Article  CAS  Google Scholar 

  42. 42.

    I. Dimitrov, B. Trzebicka, A. H. E. Müller, A. Dworak, and C. B. Tsvetanov, Prog. Polym. Sci. 32 (11), 1275 (2007).

    Article  CAS  Google Scholar 

  43. 43.

    A. A. Steinschulte, B. Schulte, M. Erberich, O. V. Borisov, and F. A. Plamper, ACS Macro Lett. 1 (4), 504 (2012).

    Article  CAS  Google Scholar 

  44. 44.

    C. Weber, R. Hoogenboom, and U. S. Schubert, Prog. Polym. Sci. 37 (5), 686 (2012).

    Article  CAS  Google Scholar 

  45. 45.

    A. A. Steinschulte, B. Schulte, S. Rütten, T. Eckert, J. Okuda, M. Möller, S. Schneider, O. V. Borisov, and F. A. Plamper, Phys. Chem. Chem. Phys. 16 (10), 4917 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    W. Schärtl, Light Scattering from Polymer Solutions and Nanoparticle Dispersions (Springer, Berlin, 2007).

    Google Scholar 

  47. 47.

    X. Han, X. Zhang, H. Zhu, Q. Yin, H. L. Liu, and Y. Hu, Langmuir 29 (2), 1024 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    A. Zaccone, J. J. Crassous, B. Béri, and M. Ballauff, Phys. Rev. Lett. 107 (16), 168303 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    M. Meyer, M. Antonietti, and H. Schlaad, Soft Matter 3 (4), 430 (2007).

    Article  CAS  Google Scholar 

  50. 50.

    J. Bühler, S. Muth, K. Fischer, and M. Schmidt, Macromol. Rapid Commun. 34 (7), 588 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    A. P. Filippov, A. I. Amirova, and A. V. Tenkovtsev, Fibre Chem. 47 (4),291.

  52. 52.

    A. I. Amirova, S. V. Rodchenko, and A. P. Filippov, J. Polym. Res. 23 (11), 221 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Kirila.

Additional information

Original Russian Text © T.Yu. Kirila, M.P. Kurlykin, A.V. Ten’kovtsev, A.P. Filippov, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2018, Vol. 60, No. 3, pp. 179–189.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kirila, T.Y., Kurlykin, M.P., Ten’kovtsev, A.V. et al. Behavior of a Thermosensitive Star-Shaped Polymer with Polyethyloxazoline-block-Polyisopropyloxazoline Copolymer Arms. Polym. Sci. Ser. A 60, 249–259 (2018). https://doi.org/10.1134/S0965545X18030069

Download citation