Skip to main content
Log in

Thermal Properties of Salt and Base Forms of Chitosan

  • Natural Polymers
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The temperature dependences of elastic and relaxation properties of films of salt and base forms of chitosan were obtained by methods of dynamic mechanical analysis. It was estimated that the presence of two maxima on the temperature dependence of mechanical loss tangent tanδ at T1 = 150–160°C and T2 = 250–270°C is typical of the salt form of chitosan. The maximum at 150–160°C on tanδ curves is reduced or even eliminated after thermal or alcohol–alkali treatment of chitosan acetate films, while the high-temperature maximum is preserved. The results of IR spectroscopy and thermogravimetric analysis allow supposing that the low-temperature maximum of molecular mobility in films of chitosan salt form is related to the removal of absorbed water and residues of acetic acid as well as to dehydration of macromolecules. The maximum at 259°C determines the glass transition temperature of the chitosan base form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Dobrovol’skaya, V. E. Yudin, P. V. Popryadukhin, and E. M. Ivankova, Polymer Matrices for Tissue Engineering (Izdatel’sko-poligraficheskaya assotsiatsiya universitetov Rossii, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  2. F. Thomas, S. K. Hui, K. Karineh, and S. S. Molly, Biomaterials 26, 5872 (2005).

    Article  Google Scholar 

  3. Y. M. Yang, W. Hu, and X. S. Gu, J. Mater. Sci.: Mater. Med. 18, 2117 (2007).

    CAS  Google Scholar 

  4. B. Yang, X. Y. Li, Sh. Shi, X. Y. Kong, G. Guo, M. J. Huang, F. Luo, Yu. Q. Wei, and Z. Y. Qian, Carbohydr. Res. 80, 860 (2010).

    Article  CAS  Google Scholar 

  5. M. I. Shtil’man, Polymers for Medical and Biological Application (Akademkniga, Moscow, 2006) [in Russian].

    Google Scholar 

  6. M. Jenkins, Biomedical Polymers (CRC Press, Boca Raton, 2007).

    Book  Google Scholar 

  7. G. A. Vikhoreva and L. S. Golbraikh, Films and Fibers based on Chitin and its Derivatives. Chitin and Chitosan. Production, Properties, Application (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  8. D. M. Yoon and J. P. Fisher, Tissue Eng. 7, 18 (2007).

    Google Scholar 

  9. V. E. Yudin, I. P. Dobrovolskaya, I. M. Neelov, E. N. Dresvyanina, P. V. Popryadukhin, E. M. Ivan’kova, V. Yu. Elokhovskii, I. A. Kasatkin, B. M. Okrugin, and P. Morganti, Carbohydr. Polym. 108, 176 (2014).

    Article  CAS  Google Scholar 

  10. M.-B. Narimane, B. De Hélène, V. Christophe, and A. Fabrice, J. Appl. Polym. Sci. 131, 41257 (2014).

    Google Scholar 

  11. L. E. Nielsen, Mechanical Properties of Polymers and Composites (Dekker, New York, 1974).

    Google Scholar 

  12. J. Zhao, W. Han, H. Chen, M. Tu, R. Zeng, Y. Shi, Zh. Cha, and Ch. Zhou, Carbohydr. Polym. 83 (4), 1541 (2011).

    Article  CAS  Google Scholar 

  13. R. A. A. Muzzarelli, Carbohydr. Polym. 3 (4), 53 (1983).

    Article  CAS  Google Scholar 

  14. A. N. Ozerin, N. S. Perov, A. N. Zelenetskii, T. A. Akopova, L. A. Ozerina, A. S. Kechek’yan, N. M. Surin, L. V. Vladimirov, and V. D. Yulovskaya, Rossiiskie Nanotekhnologii 4 (5–6), 331 (2009).

    Article  Google Scholar 

  15. Y. Dong, Y. Ruan, H. Wang, Y. Zhao, D. Bi, J. Appl. Polym. Sci. 93, 1556 (2004).

    Article  Google Scholar 

  16. S. J. Kim, S. R. Shin, and S. I. Kim, High Perform. Polym. 14 (14), 310 (2002).

    Google Scholar 

  17. J. A. Ratto, T. Hatakeyama, and R. B. Blumstein, Polymer 36 (15), 2917 (1995).

    Article  Google Scholar 

  18. A. P. Martinez-Camacho, M. O. Cortez-Rocha, J. M. Ezquerra-Brauer, A. Z. Graciano-Verdugo, F. Rodriguez-Felix, M. M. Castillo-Ortega, M. S. Yépiz-Gómez, and M. Plascencia-Jatomea, Carbohydr. Polym. 82, 305 (2010).

    Article  CAS  Google Scholar 

  19. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules (Metheun and Co., Ltd., London, 1954).

    Google Scholar 

  20. K. Van de Velde and P. Kiekens, Carbohydr. Polym. 58 (4), 409 (2004).

    Article  Google Scholar 

  21. A. Pinotti, M. A. Garcia, M. N. Martino, and N. E. Zaritzky, Food Hydrocolloids 21 (1), 66 (2007).

    Article  CAS  Google Scholar 

  22. J. D. Ferry, Viscoelastic Properties of Polymers (John Wiley and Sons, New York, 1980).

    Google Scholar 

  23. V. P. Toshchevikov, V. E. Smirnova, V. E. Yudin, and V.M. Svetlichni, Macromol. Symp. 316, 83 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Dresvyanina.

Additional information

Original Russian Text © E.N. Dresvyanina, I.P. Dobrovol’skaya, V.E. Smirnova, E.N. Popova, E.N. Vlasova, V.E. Yudin, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2018, Vol. 60, No. 2, pp. 134–139.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dresvyanina, E.N., Dobrovol’skaya, I.P., Smirnov, V.E. et al. Thermal Properties of Salt and Base Forms of Chitosan. Polym. Sci. Ser. A 60, 179–183 (2018). https://doi.org/10.1134/S0965545X18020049

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X18020049

Navigation