Skip to main content
Log in

Thermodynamics of Swelling of Polyacrylamide and Poly(methacrylic acid) Lyophilized Xerogels in Water

  • Polymer Gels
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The structure and thermodynamic functions of water mixing with polyacrylamide and poly(methacrylic acid) xerogels prepared via drying of chemically crosslinked hydrogels equilibrium swollen in water are studied by methods of scanning electron microscopy, low-temperature nitrogen adsorption, differential scanning calorimetry, isothermal interval sorption of water vapor, and microcalorimetry. The liquid-phase drying in air at 70°C and solid-phase lyophilic drying under vacuum are used. Samples dried by different methods have dissimilar structures, which significantly affects the thermodynamics of the interaction of xerogels with water. The Flory–Huggins parameter of interaction of polyacrylamide and poly(methacrylic acid) with water and also its enthalpy and entropy components are independent of the procedure of xerogel preparation. The influence of the latter component manifests itself only in the thermodynamics of the relaxation of the nonequilibrium glassy structure of polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Tager, Physical Chemistry of Polymers (Nauchnyi mir, Moscow, 2007) [in Russian].

    Google Scholar 

  2. S. M. Lipatov and S. I. Meerson, Kolloidn. Zh. 18 (4), 447 (1956).

    Google Scholar 

  3. S. I. Meerson and S. M. Lipatov, Kolloidn. Zh. 21 (5), 530 (1959).

    Google Scholar 

  4. A. A. Tager and V. A. Kargin, Kolloidn. Zh. 14 (5), 367 (1952).

    CAS  Google Scholar 

  5. E. Jenkel and K. Gorke, Z. Elektrochem. 60 (6), 579 (1956).

    Google Scholar 

  6. J. H. Gibbs and E. A. DiMarzio, J. Chem. Phys. 28 (3), 373 (1958).

    Article  CAS  Google Scholar 

  7. V. G. Tsvetkov and L. Ya. Tsvetkova, Zh. Fiz. Khim. 53 (9), 1822 (1979).

    CAS  Google Scholar 

  8. A. E. Chalykh and V. E. Krakov, Vysokomol. Soedin., Ser. B 28 (6), 435 (1986).

    CAS  Google Scholar 

  9. V. K. Gerasimov, A. A. Chalykh, A. E. Chalykh, V. M. Rasgovorova, and M. M. Feldchtein, Polym. Sci., Ser. A 43 (12), 2015 (2001).

    CAS  Google Scholar 

  10. G. S. Kulagina, A. E. Chalykh, and V. K. Gerasimov, Polym. Sci., Ser. A 49 (4), 425 (2007).

    Article  Google Scholar 

  11. A. P. Safronov, Polym. Sci., Ser. A 33 (10), 2198 (1991).

    CAS  Google Scholar 

  12. A. P. Safronov and L. V. Adamova, Polym. Sci., Ser. A 44 (4), 408 (2002).

    Google Scholar 

  13. A. P. Safronov and L. V. Adamova, Polymer 43 (9), 2653 (2002).

    Article  CAS  Google Scholar 

  14. A. P. Safronov, A. S. Istomina, T. V. Terziyan, Yu. I. Polyakova, and I. V. Beketov, Polym. Sci., Ser. A 54 (3), 214 (2012).

    Article  CAS  Google Scholar 

  15. L. V. Adamova, A. A. Tager, and I. N. Razinskaya, Vysokomol. Soedin., Ser. A 30 (6), 1312 (1988).

    CAS  Google Scholar 

  16. A. E. Chalykh and V. K. Gerasimov, Russ. Chem. Rev. 73 (1), 63 (2004).

    Article  Google Scholar 

  17. A. E. Chalykh, V. K. Gerasimov, A. A. Shcherbina, G. S. Kulagina, and R. R. Khasbiullin, Polym. Sci., Ser. A 50 (6), 640 (2008).

    Article  Google Scholar 

  18. D. L. Teagarden and D. S. Baker, Eur. J. Pharm. Sci. 15 (1), 115 (2002).

    Article  CAS  Google Scholar 

  19. W. Wang, M. Chen, and G. Chen, Chin. J. Chem. Eng. 20 (3), 551 (2012).

    Article  CAS  Google Scholar 

  20. J. C. Kasper, G. Winter, and W. Friess, Eur. J. Pharm. Biopharm. 85 (1), 162 (2013).

    Article  CAS  Google Scholar 

  21. R. Geidobler and G. Winter, Eur. J. Pharm. Biopharm. 85 (2), 214 (2013).

    Article  CAS  Google Scholar 

  22. T. Ikeda-Fukazava, N. Ikeda, and M. Tabata, J. Polym. Sci., Polym. Phys. Ed. 51, 1017 (2013).

    Article  Google Scholar 

  23. N. E. Kotelnikova, A. M. Mikhailidi, and Yu. V. Martakova, Polym. Sci., Ser. A 59 (1), 75 (2017).

    Google Scholar 

  24. V. M. Dinu, M. M. Ozmen, S. E. Dragan, and O. Okay, Polymer 48 (7), 195 (2007).

    Article  CAS  Google Scholar 

  25. H. B. Chen, E. Hollinger, Y. Z. Wang, and D. A. Schiraldi, Polymer 55 (1), 380 (2014).

    Article  CAS  Google Scholar 

  26. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic Press, Inc., New York, 1982).

    Google Scholar 

  27. A. A. Tager and M. V. Tsilipotkina, Russ. Chem. Rev. 47 (1), 83 (1978).

    Article  Google Scholar 

  28. C. E. Rodgers, Polymer Permeability (Elsevier, London, 1985).

    Google Scholar 

  29. A. E. Chalykh, T. F. Petrova, R. R. Khasbiullin, and A. N. Ozerin, Polym. Sci., Ser. A 56 (5), 614 (2014).

    Article  CAS  Google Scholar 

  30. A. P. Safronov, Ye. A. Smirnova, G. H. Pollack, and F. A. Blyakhman, Macromol. Chem. Phys. 205 (11), 1431 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Adamova.

Additional information

Original Russian Text © L.V. Adamova, A.P. Safronov, T.V. Terziyan, P.A. Shabadrov, A.V. Klyukina, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2018, Vol. 60, No. 2, pp. 146–153.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamova, L.V., Safronov, A.P., Terziyan, T.V. et al. Thermodynamics of Swelling of Polyacrylamide and Poly(methacrylic acid) Lyophilized Xerogels in Water. Polym. Sci. Ser. A 60, 190–197 (2018). https://doi.org/10.1134/S0965545X18020013

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X18020013

Navigation