Skip to main content
Log in

Dielectric properties of films of Ag-ED20 epoxy nanocomposite synthesized in situ. Temperature dependence of direct current conductivity

  • Composites
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The influence of silver myristate used as a precursor of silver nanoparticles on the direct current conductivity σ dc of epoxy polymer within the concentration range of ≤0.8 wt % was investigated. The value of direct current conductivity was determined on the basis of analysis of the frequency dependence of complex permittivity within the frequency range of 10−2–105 Hz. The temperature dependence of σ dc is composed of two regions. The dependence corresponds to the Vogel-Fulcher-Tammann empirical law σ dc = σ dc0exp{‒DT 0/(T-T 0)} (where T 0 is the Vogel temperature and D is the strength parameter) at temperatures higher than the glass transition temperature T g. At the same time, T 0 does not depend on the concentration of nanoparticles. The Arrhenius temperature dependence characterized by activation energy about 1.2 eV is observed at temperatures lower than T g. The observed shape of the temperature dependence is related to the change in the mechanism of conductivity after “freezing” of ionic mobility at temperatures lower than T g. The value of σ dc is increased as the concentration of nanoparticles is raised within the temperature range of T > T g. The obtained dependence of σ dc on silver myristate concentration is similar to the root one, indicating the absence of percolation within the studied range of concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gonon and A. Boudefel, J. Appl. Phys. 99 (2), 024308 (2006).

    Article  Google Scholar 

  2. A. Patsidis and G. C. Psarras, eXPRESS Polym. Lett. 2 (10), 718 (2008).

    Article  CAS  Google Scholar 

  3. S. Singha and M. J. Thomas, IEEE Trans. Dielectr. Electr. Insul. 15 (1), 12 (2008).

    Article  CAS  Google Scholar 

  4. I. Plesa, F. Ciuprina, and P. V. Notingher, J. Adv. Res. Phys. 1 (1), 1 (2010).

    Article  Google Scholar 

  5. A. Vavouliotis, E. Fiamegou, P. Karapappas, G. C. Psarras, and V. Kostopoulos, Polym. Compos. 31 (11), 1874 (2010).

    Article  CAS  Google Scholar 

  6. L. Vescovo, M. Sangermano, R. Scarazzin, G. Kortaberria, and J. Mondragen, Macromol. Chem. Phys. 211 (17), 1933 (2010).

    Article  CAS  Google Scholar 

  7. G. Kortaberria, P. Arruti, I. Modragon, L. Vescovo, and M. Sangermano, J. Appl. Polym. Sci. 120 (4), 2361 (2011). Tg = T0(1 + AD), A = 0.0255

    Article  CAS  Google Scholar 

  8. L. Bogdanova, L. Kuzub, E. Dzhavadjan, E. Rabenok, G. Novikov, and A. Pomogailo, Macromol. Symp. 317–318, 117 (2012).

    Article  Google Scholar 

  9. Q. Wang and G. Chen, Adv. Mater. Res. 1 (1), 93 (2012).

    Article  Google Scholar 

  10. F. Ciuprina, A. Hornea, and M.-G. Barbuta, UPB Sci. Bull., Ser. A 75 (3), 159 (2013).

    Google Scholar 

  11. Q. Wang and G. Chen, IEEE Trans. Dielectr. Electr. Insul. 21 (4), 1809 (2014).

    Article  CAS  Google Scholar 

  12. G. N. Mathioudakis, A. C. Patsidis, and G. C. Psarras, J. Therm. Anal. Calorim. 116, 27 (2014).

    Article  CAS  Google Scholar 

  13. B. Tsonos, A. Kanapitsas, G. C. Psarras, and Th. Speliotis, Sci. Adv. Mater. 7 (3), 588 (2015).

    Article  CAS  Google Scholar 

  14. Y. Yagci, M. Sangermano, and G. Rizza, Polymer 49 (24), 5195 (2008).

    Article  CAS  Google Scholar 

  15. H. Gao, L. Liu, Y. Luo, and D. Jia, Mater. Lett. 65 (23-24), 3529 (2011).

    Article  CAS  Google Scholar 

  16. L. M. Bogdanova, L. I. Kuzub, E. A. Dzhavadyan, V. I. Torbov, N. N. Dremova, and A. D. Pomogailo, Polym. Sci., Ser. A 56 (3), 304 (2014).

    Article  CAS  Google Scholar 

  17. G. F. Novikov, E. V. Rabenok, L. M. Bogdanova, and V. I. Irzhak, Russ. J. Phys. Chem. A 91 (10), 1971 (2017).

    Article  Google Scholar 

  18. M. Yamamoto, Y. Kashiwagi, and M. Nakamoto, Langmuir 22, 8581 (2006).

    Article  CAS  Google Scholar 

  19. E. V. Raenok, G. F. Novikov, Ya. I. Estrin, and E. R. Badamshina, Russ. J. Phys. Chem. A 89 (3), 436 (2015).

    Article  Google Scholar 

  20. WinFit 2.9, Owner’s Manual (Novocontrol GmbH, Germany, 2000), no. 12, p. 137.

  21. F. Kremer, in Broadand Dielectric Spectroscop, Ed. by A. Schonhals (Springer-Verlag, Berlin, 2003), Chap. 3.

  22. I. A. Chernov, T. R. Deberdeev, G. F. Novikov, R. M. Garipov, and V. I. Irzhak, Int. Polym. Sci. Technol. 31 (5), 17 (2004).

    Google Scholar 

  23. N. A. Nikonorova, E. B. Barmatov, D. A. Pebalk, M. A. Barmatova, G. Dommguez-Espinosa, R. Diaz- Calleja, and P. Pissis, J. Phys. Chem. C 111, 8451 (2007).

    Article  CAS  Google Scholar 

  24. G. F. Novikov, E. V. Rabenok, Ya. I. Estrin, Yu. A. Ol’hov, and E. R. Badamshina, Russ. J. Phys. Chem. A 88 (10), 1790 (2014).

    CAS  Google Scholar 

  25. P. Hedvig, Dielectric Spectroscopy in Polymers (Adam Hilger, Bristol, England, 1977).

    Google Scholar 

  26. C. Tsonos, L. Apekis, K. Viras, L. Stepanenko, L. Karabanova, and L. Sergeeva, Solid State Ionics 143, 229 (2001).

    Article  CAS  Google Scholar 

  27. P. Pissis and A. Kyritsis, Solid State Ionics 97, 105 (1997).

    Article  CAS  Google Scholar 

  28. K. Yamamoto and H. Hamikawa, Jpn. J. Appl. Phys. A 27, 1845 (1988).

    Article  Google Scholar 

  29. G. A. Shandryuk, A. V. Rebrov, R. B. Vasiliev, S. G. Dorofeev, A. S. Merekalov, A. M. Gas’kov, and R. V. Talroze, Polym. Sci., Ser. B 47, 266 (2005).

    Google Scholar 

  30. K. Miyairi, J. Phys. D: Appl. Phys. 19, 1973 (1986).

    Article  CAS  Google Scholar 

  31. E. Neagu, P. Pissis, and L. Apekis, J. Appl. Phys. 87, 2914 (2000).

    Article  CAS  Google Scholar 

  32. D. J. Bergman and D. Stroud, Solid State Phys. 46, 147 (1992).

    Article  CAS  Google Scholar 

  33. J. P. Clerc, G. Giraud, J. M. Laugier, and J. M. Luck, Adv. Phys. 39, 191 (1990).

    Article  CAS  Google Scholar 

  34. H. Scher and R. Zallen, J. Chem. Phys. 53, 3759 (1970).

    Article  CAS  Google Scholar 

  35. K. N. Fisher, Phys. Status Solidi 116, 357 (1983).

    Article  Google Scholar 

  36. D. Viehland, S. Jang, and L. E. Cross, Philos. Mag. B 64 (3), 335 (1991).

    Article  CAS  Google Scholar 

  37. R. Richert and C. A. Angell, J. Chem. Phys. 108 (21), 9016 (1998).

    Article  CAS  Google Scholar 

  38. V. G. Rostiashvili, V. I. Irzhak, and B. A. Rozenberg, Glass Transition of Polymers (Khimiya, Leningrad, 1984) [in Russian].

    Google Scholar 

  39. T. S. Velayutham, W. H. Abd Majid, W. C. Gan, A. Zak Khorsand, and J. S. N. Gan, Appl. Phys. 112, 054106 (2012).

  40. C. A. Angell, J. Non-Cryst. Solids 13, 131 (1991).

    Google Scholar 

  41. C. A. Angell, “Strong and Fragile Liquids,” in Relaxations in Complex Systems, Ed. by K. L. Ngai and G. B. Wright (Nat. Tech. Inform. Service, Springfield, 1985).

    Google Scholar 

  42. R. Boehmer, K. L. Ngai, C. A. Angell, and J. D. Plazek, J. Chem. Phys. 99, 4201 (1993).

    Article  CAS  Google Scholar 

  43. J. C. Martinez-Garcia, S. J. Rzoska, A. Drozd-Rzoska, S. Starzonek, and J. C. Mauro, Sci. Rep. 5, 8314 (2015).

    Article  CAS  Google Scholar 

  44. C. A. Angell, Annu. Rev. Phys. Chem. 43, 693 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Novikov.

Additional information

Original Russian Text © G.F. Novikov, E.V. Rabenok, L.M. Bogdanova, V.I. Irzhak, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2017, Vol. 59, No. 5, pp. 447–456.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, G.F., Rabenok, E.V., Bogdanova, L.M. et al. Dielectric properties of films of Ag-ED20 epoxy nanocomposite synthesized in situ. Temperature dependence of direct current conductivity. Polym. Sci. Ser. A 59, 741–750 (2017). https://doi.org/10.1134/S0965545X17050145

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17050145

Navigation