Advertisement

Polymer Science, Series A

, Volume 59, Issue 5, pp 676–684 | Cite as

Effect of coagulating agent viscosity on the kinetics of formation, morphology, and transport properties of cellulose nanofiltration membranes

  • S. O. IlyinEmail author
  • V. V. Makarova
  • T. S. Anokhina
  • A. V. Volkov
  • S. V. Antonov
Polymer Membranes

Abstract

Low-viscous coagulating agents are tradionally used to precipitate polymers from their solutions and obtain films and fibers from them; they represent, as a rule, the combinations of solvent and nonsolvent of the polymer used. At the same time, since the structure of the precipitated polymer is formed under non-equilibrium conditions, the influence of the coagulant viscosity can be quite substantial. The influence of the viscosity of the medium on the formation of structure, morphology, and transport characteristics of the precipitated polymer is studied by example of forming of the cellulose membranes from solution in N-methyl-morpholine N-oxide using some proton-donor coagulants. In this regard, the interdiffusion processes proceeding at the contact of cellulose solutions and coagulating agents (water, propylene glycol, glycerin) are explored using the laser interferometry method. Varying the precipitator viscosity allows one to change the rate of formation and correspondingly the morphology of the cellulose films. In turn, the membrane structure determines its transport characteristics, which were assessed by the filtration of aprotic media with anionic dyes—Orange II and Remazol Brilliant Blue R. The application of the low-viscous precipitator provides the formation of a uniform film structure in the bulk, but leads to development of defects close to the surface, while a viscous medium promotes the formation of a relatively thin dense shell on the films.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Drioli and L. Giorno, Encyclopedia of Membranes (Springer, Berlin, 2016).CrossRefGoogle Scholar
  2. 2.
    N. Hilal, H. Al-Zoubi, N. A. Darwish, A. W. Mohammad, and M. A. Arabi, Desalination 170, 281 (2004).CrossRefGoogle Scholar
  3. 3.
    M. Paul and S. D. Jons, Polymer 103, 417 (2016).CrossRefGoogle Scholar
  4. 4.
    K. P. Lee, T. C. Arnot, and D. Mattia, J. Membr. Sci. 370 (1–2), 1 (2011).CrossRefGoogle Scholar
  5. 5.
    A. F. Ismail, K. C. Khulbe, and T. Matsuura, in Gas Separation Membranes: Polymeric and Inorganic (Springer, Berlin, 2015).CrossRefGoogle Scholar
  6. 6.
    P. Anastas and N. Eghbali, Chem. Soc. Rev. 39, 301 (2010).CrossRefGoogle Scholar
  7. 7.
    B. S. Lalia, V. Kochkodan, R. Hashaikeh, and N. Hilal, Desalination 326, 77 (2013).CrossRefGoogle Scholar
  8. 8.
    G. R. Guillen, Y. Pan, M. Li, and E. M. V. Hoek, Ind. Eng. Chem. Res. 50, 3798 (2011).CrossRefGoogle Scholar
  9. 9.
    D.-M. Wang and J.-Y. Lai, Curr. Opin. Chem. Eng. 2 (2), 229 (2013).CrossRefGoogle Scholar
  10. 10.
    P. van de Witte, P. J. Dijkstra, J. W. A. Berg, and J. Feijen, J. Membr. Sci. 117, 1 (1996).CrossRefGoogle Scholar
  11. 11.
    J. G. Wijmans, J. Kant, M. H. V. Mulder, and C. A. Smolders, Polymer 26, 1539 (1985).CrossRefGoogle Scholar
  12. 12.
    A. J. Reuvers, F. W. Altena, and C. A. Smolders, J. Polym. Sci., Part B: Polym Phys. 24, 793 (1986).CrossRefGoogle Scholar
  13. 13.
    S.-G. Li, Th. van den Boomgaard, C. A. Smolders, and H. Strathmann, Macromolecules 29, 2053 (1996).CrossRefGoogle Scholar
  14. 14.
    G. R. Guillen, G. Z. Ramon, H. P. Kavehpour, R. B. Kaner, and E. M. V. Hoek, J. Membr. Sci. 431, 212 (2013).CrossRefGoogle Scholar
  15. 15.
    T. F. Liebert, T. J. Heinze, and K. J. Edgar, in Cellulose Solvents: For Analysis, Shaping and Chemical Modification (Am. Chem. Soc., Washington, 2010).CrossRefGoogle Scholar
  16. 16.
    C. Olsson and G. Westman, in Cellulose-Fundamental Aspects, Ed. by T. van de Ven and L. Godbout (InTech, Rijeka, 2013), p. 143.Google Scholar
  17. 17.
    T. Budtova and P. Navard, Cellulose 23, 5 (2016).CrossRefGoogle Scholar
  18. 18.
    C. L. McCormick, P. A. Callais, and B. H. J. Hutchinson, Macromolecules 18, 2394 (1985).CrossRefGoogle Scholar
  19. 19.
    C. Zhang, R. Liu, J. Xiang, H. Kang, Z. Liu, and Y. Huang, J. Phys. Chem. B 118 (31), 9507 (2014).CrossRefGoogle Scholar
  20. 20.
    Z. Wang, S. Liu, Y. Matsumoto, and S. Kuga, Cellulose 19, 393 (2012).CrossRefGoogle Scholar
  21. 21.
    H. Wang, G. Gurau, and R. D. Rogers, Chem. Soc. Rev. 41, 1519 (2012).CrossRefGoogle Scholar
  22. 22.
    M. Isik, H. Sardon, and D. Mecerreyes, Int. J. Mol. Sci. 15, 11922 (2014).CrossRefGoogle Scholar
  23. 23.
    A. Pinkert, K. N. Marsh, S. Pang, and M. P. Staiger, Chem. Rev. 109, 6712 (2009).CrossRefGoogle Scholar
  24. 24.
    L. K. J. Hauru, M. Hummel, A. W. T. King, I. Kilpeläinen, and H. Sixta, Biomacromolecules 13, 2896 (2012).CrossRefGoogle Scholar
  25. 25.
    M. Gericke, T. Liebert, O. A. El Seoud, and T. Heinze, Macromol. Mater. Eng. 296, 483 (2011).CrossRefGoogle Scholar
  26. 26.
    J. Tao, T. Kishimoto, S. Suzuki, M. Hamada, and N. Nakajima, Holzforschung 70, 519 (2016).Google Scholar
  27. 27.
    X. Li, Y. Zhang, J. Tang, A. Lan, Y. Yang, M. Gibril, and M. Yu, J. Polym. Res. 23 (2), 1 (2016).CrossRefGoogle Scholar
  28. 28.
    R. Rinaldi, Chem. Commun. 47, 511 (2011).CrossRefGoogle Scholar
  29. 29.
    H. P. Gelbke, T. Göen, M. Mäurer, and S. I. Sulsky, Crit. Rev. Toxicol. 39 (S2), 1 (2009).CrossRefGoogle Scholar
  30. 30.
    L. K. Golova, I. S. Makarov, E. V. Matukhina, and V. G. Kulichikhin, Polym. Sci., Ser. A 52 (11), 1209 (2010).CrossRefGoogle Scholar
  31. 31.
    T. Rosenau, A. Potthast, H. Sixta, and P. Kosma, Prog. Polym. Sci. 26 (9), 1763 (2001).CrossRefGoogle Scholar
  32. 32.
    V. G. Kulichikhin, L. K. Golova, I. S. Makarov, G. N. Bondarenko, A. K. Berkovich, and S. O. Ilyin, Polym. Sci., Ser. C 58 (1), 74 (2016).CrossRefGoogle Scholar
  33. 33.
    V. V. Makarova, S. V. Antonov, T. V. Brantseva, V. G. Kulichikhin, and T. S. Anokhina, Polym. Sci., Ser. A 58 (5), 732 (2016).CrossRefGoogle Scholar
  34. 34.
    V. V. Makarova, S. V. Antonov, T. A. Anokhina, and V. V. Volkov, J. Phys.: Conf. Ser. 751, 012045 (2016).Google Scholar
  35. 35.
    L. K. Golova, Fibre Chem. 28 (1), 5 (1996).CrossRefGoogle Scholar
  36. 36.
    V. Makarova and V. Kulichikhin, in Interferometry-Research and Applications in Science and Technology, Ed. by I. Padron (InTech, Rijeka, 2011), p. 395.Google Scholar
  37. 37.
    A. Malkin, A. Askadsky, A. Chalykh, and V. Kovriga, Experimental Methods of Polymer Physics (Mir, Moscow, 1983).Google Scholar
  38. 38.
    C. Matano, J. Phys. Jpn. 8 (3), 109 (1933).Google Scholar
  39. 39.
    Y. Marcus, Chem. Soc. Rev. 22 (6), 409 (1993).CrossRefGoogle Scholar
  40. 40.
    Handbook of Biochemistry and Molecular Biology, Ed. by R. L. Lundblad and F. Macdonald (CRC Press, New York, 2010).Google Scholar
  41. 41.
    T. S. Anokhina, A. A. Yushkin, I. S. Makarov, V. Y. Ignatenko, A. V. Kostyuk, S. V. Antonov, and A. V. Volkov, Pet. Chem. 56 (11), 1085 (2016).CrossRefGoogle Scholar
  42. 42.
    J. Geens, B.Van der Bruggen, and C. Vandecasteele, Sep. Purif. Technol. 48, 255 (2006).CrossRefGoogle Scholar
  43. 43.
    B.Van der Bruggen, M. Mänttäri, and M. Nyström, Sep. Purif. Technol. 63, 251 (2008).CrossRefGoogle Scholar
  44. 44.
    B.Van der Bruggen, J. Schaep, D. Wilms, and C. Vandecasteele, J. Membr. Sci. 156, 29 (1999).CrossRefGoogle Scholar
  45. 45.
    G. E. Gaides and A. J. McHugh, Polymer 30, 2118 (1989).CrossRefGoogle Scholar
  46. 46.
    K.-Y. Lin, D.-M. Wang, and J.-Y. Lai, Macromolecules 35, 6697 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. O. Ilyin
    • 1
    Email author
  • V. V. Makarova
    • 1
  • T. S. Anokhina
    • 1
  • A. V. Volkov
    • 1
  • S. V. Antonov
    • 1
  1. 1.A.V. Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations