Skip to main content
Log in

Optical activity of films based on chitosan of various molecular masses and modifications

  • Natural Polymers
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The effect of chemical (polysalt → polybase reaction) and physicochemical (heat and vapor processing) modifications of the films of chitosan of various molecular masses and prehistories on the optical activity of the polysaccharide is studied. For both of the chitosan chemical modifications, the following dependence that is nontrivial for high-molecular compounds is established: [α] = f(log\({\bar M_\eta }\) ); as the degree of polymerization decreases, the modulus of [α] of the films increases. The X-ray diffraction study shows that the differences in the optical activity of the samples with different \({\bar M_\eta }\) are caused by a restriction in the mobility of the macromolecular sections upon formation of the films of high-molecular chitosan and incompleteness of the relaxation processes of the film systems to the state with energetically favorable conformations. The comparison of humidity and optical and biological activities of the initial and dehydrated chitosan films is performed. The chitosan films in the salt modification feature moderate bactericidal activity, which decreases with an increase in \({\bar M_\eta }\) of the polymer. The thermal processing of the salt modification reduces the antibacterial action; a conversion to the base form is accompanied by the loss of bactericidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rinaudo, Prog. Polym. Sci. 31 (7), 603 (2006).

    Article  CAS  Google Scholar 

  2. F. Croisier and C. Jérôme, Eur. Polym. J. 49 (4), 780 (2013).

    Article  CAS  Google Scholar 

  3. E. N. Fedoseeva, M. F. Alekseeva, and L. A. Smirnova, Vestn. Nizhegorod. Univ., No. 5, 58 (2008).

    Google Scholar 

  4. A. E. Chalykh, T. F. Petrova, R. R. Khasbiullin, and A. N. Ozerin, Polym. Sci., Ser. A 56 (5), 614 (2014).

    Article  CAS  Google Scholar 

  5. A. B. Shipovskaya, D. A. Rudenko, V. I. Fomina, and N. V. Ostrovsky, Eur. J. Nat. Hist, No. 6, 7 (2012).

    Google Scholar 

  6. A. B. Shipovskaya, V. I. Fomina, D. A. Rudenko, and S. Yu. Shchyogolev, Int. J. Polym. Sci 2013, Article ID 825296 (2013). doi 10.1155/2013/825296.

    Google Scholar 

  7. M. A. Zotkin, G. A. Vikhoreva, and AS. Kechek’yan, Polym. Sci., Ser. B 46 (1–2), 39 (2004).

    Google Scholar 

  8. E. P. Ageev, G. A. Vikhoreva, M. A. Zotkin, N. N. Matushkina, V. I. Gerasimov, S. B. Zezin, and Mη E. S. Obolonkova, Polym. Sci., Ser. A 46 (12), 1245 (2004).

    Google Scholar 

  9. K. Ogawa and T. Yui, Int. J. Biol. Macromol. 34 (1–2), 1 (2004).

    Article  CAS  Google Scholar 

  10. Kumar M. N. V. Ravi, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, Chem. Rev. 104 (12), 6017 (2004).

    Article  Google Scholar 

  11. D. A. Buzinova, E. A. Khmel’nitskaya, A. B. Shipovskaya, and N. V. Ostrovsky, Kletochnaya Transplantologiya Tkanevaya Inzh. 6 (1), 82 (2011).

    Google Scholar 

  12. E. I. Kulish, I. F. Tuktarova, and V. V. Chernova, Perspekt. Mater., No. 6, 25 (2014).

    Google Scholar 

  13. S. H. Yoon, W. T. Jeong, K. C. Kim, K. J. Kim, M. C. Oh, and S. M. Lee, J. Surf. Eng. Mater. Adv. Technol. 1 (2), 56 (2011).

    CAS  Google Scholar 

  14. D. Wei, W. Qian, D. Wu, Y. Xia, and X. Liu, J. Nanosci. Nanotechnol. 9, 2566 (2009).

    Article  CAS  Google Scholar 

  15. K. J. Fahnestock, M. Manesse, H. A. McIlwee, C. L. Schauer, R. Boukherroub, and S. Szunerits, Analyst 134, 881 (2009).

    Article  CAS  Google Scholar 

  16. S. S. Voznesenskiy, A. A. Sergeev, A. Y. Mironenko, S. Y. Bratskaya, and V. A. Kolchinskiy, Tech. Phys. Lett. 38 (3), 228 (2012).

    Article  CAS  Google Scholar 

  17. S. Tsukada and Y. Inoue, Carbohydr. Res. 88 (1), 19 (1981).

    Article  CAS  Google Scholar 

  18. A. Domard and N. Cartier, Int. J. Biol. Macromol. 11 (5), 297 (1989).

    Article  CAS  Google Scholar 

  19. J. Kawada, T. Yui, Y. Abe, and K. Ogawa, Biosci., Biotechnol., Biochem. 62 (4), 700 (1998).

    Article  CAS  Google Scholar 

  20. A. B. Shipovskaya, V. I. Fomina, O. F. Kazmicheva, G.N. Timofeeva, and B. A. Komarov, Polym. Sci., Ser. B 49 (11–12), 288 (2007).

    Article  Google Scholar 

  21. A. B. Shipovskaya, O. N. Malinkina, V. I. Fomina, D. A. Rudenko, and S. Yu. Shchegolev, Russ. Chem. Bull. 64 (5), 1 (2015).

    Article  Google Scholar 

  22. M. Koralewski, K. H. Bodek, and K. Marczewska, Polish Chitin Soc. XI, 29 (2006).

    Google Scholar 

  23. A. B. Shipovskaya, V. I. Fomina, M. N. Kireev, E. S. Kazakova, and I. A. Kas’yan, Izv. Saratovsk. Univ., Ser. Khim., Biol., Ecol. 8 (2), 46 (2008).

    Google Scholar 

  24. M. Koralewski, K. H. Bodek, and T. Wachowski, Polish Chitin Soc. XII, 79 (2007).

    Google Scholar 

  25. L. A. Buffington and E. S. Stevens, J. Am. Chem. Soc. 101, 5159 (1979).

    Article  CAS  Google Scholar 

  26. V. A. Vasnev, A. I. Tarasov, and G. D. Markova, Polym. Sci., Ser. B 45 (9–10), 319 (2003).

    Google Scholar 

  27. A. B. Shipovskaya, V. I. Fomina, N. A. Solonina, and K. A. Yusupova, Russ. J. Appl. Chem. 85 (1), 120 (2012).

    Article  CAS  Google Scholar 

  28. D. A. Cerqueira, G. R. Filho, and R. M. N. Assunção, Polym. Bull., No. 56, 475 (2006).

    Article  CAS  Google Scholar 

  29. A. B. Shipovskaya, O. F. Kazmicheva, and G. N. Timofeeva, in Structure and Dynamics of Molecular Systems (Inst. Fiz. Mol. Krist. Ufimskogo Nauch. Tsentra RAN, Ufa, 2002), Vol. 2, p. 293 [in Russian].

    Google Scholar 

  30. L. A. Nud’ga, V. A. Petrova, I. V. Gofman, I. V. Abalov, B. Z. Volchek, E. N. Vlasova, and Y. G. Baklagina, Russ. J. Appl. Chem. 81 (11), 1992 (2008).

    Article  Google Scholar 

  31. M. A. Zotkin, G. A. Vikhoreva, T. V. Smotrina, and M. A. Derbenev, Fibre Chem. 36 (1), 16 (2004).

    Article  CAS  Google Scholar 

  32. A. B. Shipovskaya and S. Yu. Shchegolev, Phase Analysis and Optical Activity of Cellulose Ester–Mesophasegenic Solvent Systems (Izd-vo Saratovsk. Univ., Saratov, 2014) [in Russian].

    Google Scholar 

  33. A. B. Shipovskaya, N. O. Gegel’, S. Yu. Shchegolev, and G. N. Timofeeva, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 50 (3), 19 (2007).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Shipovskaya.

Additional information

Original Russian Text © A.B. Shipovskaya, V.I. Fomina, O.F. Kazmicheva, D.A. Rudenko, O.N. Malinkina, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2017, Vol. 59, No. 3, pp. 250–261.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shipovskaya, A.B., Fomina, V.I., Kazmicheva, O.F. et al. Optical activity of films based on chitosan of various molecular masses and modifications. Polym. Sci. Ser. A 59, 330–341 (2017). https://doi.org/10.1134/S0965545X17030154

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17030154

Navigation