Skip to main content
Log in

Physical deposition behavior of charged amphiphilic diblock copolymers: Effect of charge distribution and electric field

  • Theory and Simulation
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Coarse-grained molecular dynamics simulations are used to investigate physical deposition behavior of charged amphiphlic diblock copolymers. The effects of solvent selectivity, charge distribution in amphiphlic diblock copolymers, and electric field strength on deposition conformations are studied qualitatively. Flat amphiphilic bilayers, which consist of hydrophilic monolayer and hydrophobic brush, are formed by physical deposition of charged amphiphlic diblock copolymers in nonselective solvents. For physically deposited amphiphlic diblock copolymers in selective solvents, amphiphilic bilayers consist of disc-shaped hydrophilic monolayers and hydrophobic nanospheres are found. This study sheds light on the formation of various amphiphlic diblock copolymer deposition conformations in different solvents and interaction mechanism of different components. Furthermore, the evolution of physical deposition process of charged amphiphlic diblock copolymers layer offers new insight to the controlling of amphiphilic bilayer thickness, hydrophobic nanosphere size, and interface property of depositional amphiphlic diblock copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yamamoto, S. Kitahata, A. Shimomura, K. Tokuda, T. Nishino, and T. Maruyama, Langmuir 31, 1 (2015).

    Article  Google Scholar 

  2. E. Wischerhoff, N. Badi, A. Laschewsky, and J.-F. Lutz, Adv. Polym. Sci. 240, 1 (2011).

    Article  CAS  Google Scholar 

  3. C. Draghici, J. Kowal, A. Darjan, W. Meier, and C. G. Palivan, Langmuir 30, 11660 (2014).

    Article  CAS  Google Scholar 

  4. M. Ramanathan, L. K. Shrestha, T. Mori, Q. Ji, J. P. Hillbc, and K. Ariga, Phys. Chem. Chem. Phys. 15, 10580 (2013).

    Article  CAS  Google Scholar 

  5. O. Roling, A. Mardyukov, J. A. Krings, A. Studer, and B. J. Ravoo, Macromolecules 47, 2411 (2014).

    Article  CAS  Google Scholar 

  6. K. Lv, L. Zhang, W. S. Lu, and M. Liu, ACS Appl. Mater. Interfaces 6, 18878 (2014).

    Article  CAS  Google Scholar 

  7. X. W. Chen, L. L. Hu, J. W. Liu, S. Chen, and J. H. Wang, TrAC, Trends Anal. Chem. 48, 30 (2013).

    Article  CAS  Google Scholar 

  8. K. Ishihara, Y. Goto, M. Takai, R. Matsuno, Y. Inoue, and T. Konno, Biochim. Biophys. Acta 1810, 268 (2011).

    Article  CAS  Google Scholar 

  9. G. Robert-Nicoud, R. Donno, C. J. Cadman, M. Alexander, and N. Tirelli, Polym. Chem. 5, 6687 (2014).

    Article  CAS  Google Scholar 

  10. R. Tarnawski and M. Ulbricht, Colloids Surf., A 374, 13 (2011).

    Article  CAS  Google Scholar 

  11. J. Cabaj, J. Soloducho, and A. Nowakowska-Oleksy, Sens. Actuators, B 143, 508 (2010).

    Article  CAS  Google Scholar 

  12. M. C. Vasudev, K. D. Anderson, T. J. Bunning, V. V. Tsukruk, and R. R. Naik, ACS Appl. Mater. Interfaces 519, 6224 (2011).

    Google Scholar 

  13. R. Guo, Y. Liu, Y. Zhang, A. J. Dong, and J. H. Zhang, Macromol. Res. 21, 1127 (2013).

    Article  CAS  Google Scholar 

  14. L. D. Liu, C. S. Lin, M. Tikekar, and P. H. Chen, Thin Solid Films 519, 6224 (2011).

    Article  CAS  Google Scholar 

  15. F. Szillat and S. G. Mayr, Phys. Rev. B: Condens. Matter Mater. Phys. 84, 115462 (2011).

    Article  Google Scholar 

  16. M. S. Ata and I. Zhitomirsky, Adv. Appl. Ceram. 111, 345 (2012).

    Article  CAS  Google Scholar 

  17. A. Abdal-hay, M. Dewidar, J. Lim, and J. K. Lim, Ceram. Int. 5, 3983 (2013).

    Google Scholar 

  18. H. Kim, T.-G. Kim, and J.-W. Park, Macromol. Res. 21, 815 (2013).

    Article  CAS  Google Scholar 

  19. P. Lellig, M. A. Niedermeier, M. Rawolle, M. Meister, F. Laquai, P. Müller-Buschbaum, and J. S. Gutmann, Phys. Chem. Chem. Phys. 14, 1607 (2012).

    Article  CAS  Google Scholar 

  20. F. Mirkhalaf and J. E. Graves, Chem. Pap. 66, 472 (2012).

    Article  CAS  Google Scholar 

  21. C.-W. Wang, D. Sinton, and M. G. Moffitt, J. Am. Chem. Soc. 133, 18853 (2011).

    Article  CAS  Google Scholar 

  22. Ma. H. M. Cativo, D. K. Kim, R. A. Riggleman, K. G. Yager, S. S. Nonnenmann, H. K. Chao, D.A. Bonnell, C. T. Black, C. R. Kagan, and S. J. Park, ACS Nano 8, 12755 (2014).

    Article  CAS  Google Scholar 

  23. Y. H. Deng, J. Wei, Z. K. Sun, and D. Y. Zhao, Chem. Soc. Rev. 42, 4054 (2013)

    Article  CAS  Google Scholar 

  24. B. Zeeb, C. Thongkaew, and J. Weiss, J. Appl. Polym. Sci. 131, 7 (2014).

    Article  Google Scholar 

  25. M. Lamy, T. Darmanin, and F. Guittard, Colloid Polym. Sci. 293, 933 (2015).

    Article  CAS  Google Scholar 

  26. N. Torabi, A. Behjat, and F. Jafari, Thin Solid Films 573, 112 (2014).

    Article  CAS  Google Scholar 

  27. C. Xue, X. Wang, W. Y. Zhu, Q. Han, C. H. Zhu, J. L. Hong, and X. M. Zhou, Sens. Actuators, B 196, 57 (2014).

    Article  CAS  Google Scholar 

  28. Y. Q. Cao, J. W. Zhang, Y. Yang, Z. G. Huang, N. V. Long, and M. Nogami, J. Nanosci. Nanotechnol. 14, 1194 (2014).

    Article  CAS  Google Scholar 

  29. L. V. Sigolaeva, D. V. Pergushov, C. V. Synatschke, A. Wolf, I. Dewald, I. N. Kurochkin, A. Feryc, and A. H. E. Müller, Soft Matter 9, 2858 (2013).

    Article  CAS  Google Scholar 

  30. R. K. Gupta, S. Krishnamoorthy, D. Y. Kusuma, P. S. Lee, and M. P. Srinivasan, Nanoscale 4, 2296 (2012).

    Article  CAS  Google Scholar 

  31. Y. R. Liu, J. Porous Mater. 18, 597 (2011).

    Article  CAS  Google Scholar 

  32. S. Holappa, K. S. Kontturi, A. Salminen, J. Seppälä, and J. Laine, Langmuir 29, 13750 (2013).

    Article  CAS  Google Scholar 

  33. N. C. Estillore, J. Y. Park, and R. C. Advincula, Macromolecules 43, 6588 (2010).

    Article  CAS  Google Scholar 

  34. H. F. Guo and M. Ulbricht, J. Membr. Sci. 349, 312 (2010).

    Article  CAS  Google Scholar 

  35. D. S. Wood, V. Koutsos, and P. J. Camp, Soft Matter 9, 3758 (2013).

    Article  CAS  Google Scholar 

  36. G. Fontani, R. Gaspari, N. D. Spencer, D. Passerone, and R. Crockett, Langmuir 29, 4706 (2013).

    Article  Google Scholar 

  37. J. W. Lu, C. K. Fu, S. Q. Wang, L. Tao, L. T. Yan, D. M. Haddleton, G. J. Chen, and Y. Wei, Macromolecules 47, 4676 (2014)

    Article  CAS  Google Scholar 

  38. X. M. Liu, F. He, C. Salas, M. A. Pasquinelli, J. Genzer, and O. J. Rojas, Phys. Rev. B: Condens. Matter Mater. Phys. 116, 1289 (2012).

    CAS  Google Scholar 

  39. M. Darvas, T. Gilányi, and P. Jedlovszky, Phys. Rev. B: Condens. Matter Mater. Phys. 115, 933 (2011).

    CAS  Google Scholar 

  40. L. Y. Xu and X. N. Yang, J. Colloid Interface Sci. 418, 66 (2014).

    Article  CAS  Google Scholar 

  41. Q. Q. Cao, C. C. Zuo, H. W. He, and L. J. Li, Macromol. Theory Simul. 18, 441 (2009).

    Article  CAS  Google Scholar 

  42. Q. Q. Cao, C. C. Zuo, and L. J. Li, Eur. Phys. J. E 32, 1 (2010).

    Article  CAS  Google Scholar 

  43. Q. Q. Cao, C. C. Zuo, L. J. Li, Y. H. Zhang, and G. Yan, J. Polym. Sci., Part B: Polym. Phys. 50, 805 (2012).

    Article  CAS  Google Scholar 

  44. Q. Q. Cao and H. You, Langmuir 31, 6375 (2015).

    Article  CAS  Google Scholar 

  45. F. H. Song, B. Q. Li, and C. Liu, Langmuir 30, 2394 (2014).

    Article  CAS  Google Scholar 

  46. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).

    Article  CAS  Google Scholar 

  47. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (Adam Hilger, New York, 1989).

    Google Scholar 

  48. Q. Q. Cao and M. Bachmann, Soft Matter 9, 5087 (2013).

    Article  CAS  Google Scholar 

  49. S. J. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  50. T. P. Forbes, F. L. Degertekin, and A. G. Fedorov, Phys. Fluids 23, 012104 (2011).

    Article  Google Scholar 

  51. K. Katsuki, H. Bekkui, A. Kawakami, J. Locklin, D. Patton, K. Tanaka, R. Advincula, and H. Usui, Jpn. J. Appl. Phys. 44 (1B), 504 (2005).

    Article  CAS  Google Scholar 

  52. S. Ghoshal, P. Denner, S. Stapf, and C. Mattea, Chem. Phys. Lett. 515, 231 (2011)

    Article  CAS  Google Scholar 

  53. B. J. Busche, A. E. Tonelli, and C. M. Balik, Polymer 51, 6013 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuncheng Zuo or Qianqian Cao.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Zuo, C. & Cao, Q. Physical deposition behavior of charged amphiphilic diblock copolymers: Effect of charge distribution and electric field. Polym. Sci. Ser. A 59, 253–268 (2017). https://doi.org/10.1134/S0965545X1702002X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X1702002X

Navigation