Skip to main content

The effect of electrospinning parameters on the compliance behavior of electrospun polyurethane tube for artificial common bile duct

Abstract

The present research introduced a method to produce an artificial common bile duct using electrospinning technique. Also, the effect of electrospinning variables on the mechanical properties of produced prostheses is investigated. Using electrospinning of polyurethane nanofibres, cylindrical prostheses were produced on a rotating mandrel considering the different controllable factors such as the mandrel rotational speed, the applied voltage, and the flow rate of polymer solution. Taguchi method was used to investigate the effect of mentioned factors on the compliance of circular prostheses. MTT assay was performed to study the cytotoxicity of prostheses. The results of the signal-to-noise analysis showed that the mandrel rotational speed factor has the strongest effect on the compliance values. The flow rate was the second factor and it was followed by electrospinning voltage. In addition, the optimum conditions to reach the highest compliance value were determined. The results of MTT assay indicated no cytotoxic effects of prostheses on the cells. The compliance of optimum prosthesis was found close to the compliance value of a native common bile duct.

This is a preview of subscription content, access via your institution.

References

  1. R. L. F. Cecil, L. Goldman, and A. I. Schafer, Goldman’s Cecil Medicine, Expert Consult Premium Edition-Enhanced Online Features and Print, Single Volume 24: Goldman’s Cecil Medicine (Elsevier Health Sci., Philadelphia, 2012).

    Google Scholar 

  2. J. Baerg, C. Zuppan, and M. Klooster, J. Pediatr. Surg. 39, 800 (2004).

    Article  Google Scholar 

  3. K. D. Lillemoe, G. B. Melton, J. L. Cameron, H. A. Pitt, K. A. Campbell, M. A. Talamini, P. A. Sauter, J. Coleman, and C. J. Yeo, Ann. Surg. 232, 430 (2000).

    Article  CAS  Google Scholar 

  4. R. W. Strong, Am. J. Surg. 177, 472 (1999).

    Article  CAS  Google Scholar 

  5. V. Bettschart, R. Clayton, R. Parks, O. Garden, and C. Bellamy, Gut 51, 128 (2002).

    Article  CAS  Google Scholar 

  6. Y. Cheng, Y. Lin, X. Xiong, S. Wu, J. Lu, and N. Cheng, J. Med. Hypotheses Ideas 6, 7 (2012).

    Article  Google Scholar 

  7. C. A. Hardin and C. Kittle, Surgery 30, 834 (1951).

    CAS  Google Scholar 

  8. T. Bottger, B. Mann, B. Pickel, W. Weber, K. Sorger, and T. Junginger, Langenbecks Arch. Chir. 376, 77 (1991).

    Article  CAS  Google Scholar 

  9. P. Sandblom, M. Tabrizian, M. Rigo, and A. Fluckiger, Surg., Gynecol. Obstet. 140, 425 (1975).

    CAS  Google Scholar 

  10. M. Ruka, W. Rowinski, M. Lipski, A. Wasiutynski, and W. Olszewski, Z. Exp. Chir., Transplant. Kunstliche Organe 20, 317 (1986).

    Google Scholar 

  11. D. S. Mendelowitz and J. M. Beal, Am. J. Surg. 143, 221 (1982).

    Article  CAS  Google Scholar 

  12. N. A. Gómez, L. R. Alvarez, A. Mite, J. P. Andrade, J. R. Alvarez, P. E. Vargas, N. E. Tomalá, A. F. Vivas, and J. A. Zapatier, J. Gastrointest. Surg. 6, 116 (2002).

    Article  Google Scholar 

  13. J. Theron, J. Knoetze, R. Sanderson, R. Hunter, K. Mequanint, T. Franz, P. Zilla, and D. Bezuidenhout, Acta Biomater. 6, 2434 (2010).

    Article  CAS  Google Scholar 

  14. N. M. Lamba, K. A. Woodhouse, and S. L. Cooper, Polyurethanes in Biomedical Applications (CRC Press, New York, 1997).

    Google Scholar 

  15. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res. 60, 613 (2002).

    Article  CAS  Google Scholar 

  16. N. Detta, C. Errico, D. Dinucci, D. Puppi, D. A. Clarke, G. C. Reilly, and F. Chiellini, J. Mater. Sci.: Mater. Med. 21, 1761 (2010).

    CAS  Google Scholar 

  17. R. M. Nezarati, M. B. Eifert, D. K. Dempsey, and E. Cosgriff-Hernandez, J. Biomed. Mater. Res. Part B: Appl. Biomater. 103, 313 (2015).

    Article  Google Scholar 

  18. J. Kucinska-Lipka, I. Gubanska, H. Janik, and M. Sienkiewicz, Mater. Sci. Eng., C 46, 166 (2015).

    Article  CAS  Google Scholar 

  19. H. Bergmeister, C. Schreiber, C. Grasl, I. Walter, R. Plasenzotti, M. Stoiber, D. Bernhard, and H. Schima, Acta Biomater. 9, 6032 (2013).

    Article  CAS  Google Scholar 

  20. N. Moazeni, D. Semnani, M. Latifi, and M. Sadrjahani, Procedia Mater. Sci. 11, 166 (2015).

    Article  CAS  Google Scholar 

  21. J. Zhou, Y. Yang, X. Yin, Y. Xu, Y. Cao, and Q. Xu, Int. J. Artif. Organs 36, 121 (2013).

    Article  Google Scholar 

  22. B. U. Duch, H. Andersen, and H. Gregersen, Biomed. Eng. Online 3, 23 (2004).

    Article  Google Scholar 

  23. W.-J. Li, R. L. Mauck, J. A. Cooper, X. Yuan, and R. S. Tuan, J. Biomech. 40, 1686 (2007).

    Article  Google Scholar 

  24. T. Stylianopoulos, C. A. Bashur, A. S. Goldstein, S. A. Guelcher, and V. H. Barocas, J. Mech. Behav. Biomed. Mater. 1, 326 (2008).

    Article  Google Scholar 

  25. V. Milleret, B. Simona, P. Neuenschwander, and H. Hall, Eur. Cell. Mater. 21, 286 (2011).

    Article  CAS  Google Scholar 

  26. G. Taguchi and Y. Yokoyama, Taguchi Methods: Design of Experiments (Amer. Supplier. Inst., Allen Park, 1993).

    Google Scholar 

  27. C. E. Ayres, B. S. Jha, H. Meredith, J. R. Bowman, G. L. Bowlin, S. C. Henderson, and D. G. Simpson, J. Biomater. Sci., Polym. Ed. 19, 603 (2008).

    Article  CAS  Google Scholar 

  28. R. Jalili, M. Morshed, and S. A. H. Ravandi, J. Appl. Polym. Sci. 101, 4350 (2006).

    Article  CAS  Google Scholar 

  29. F. Khoffi, F. Dieval, N. Chakfé, and B. Durand, Phys. Procedia 21, 234 (2011).

    Article  CAS  Google Scholar 

  30. S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers (World Scientific, Singapore, 2005).

    Book  Google Scholar 

  31. S. F. Fennessey and R. J. Farris, Polymer 45, 4217 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmeh Moazeni.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moazeni, N., Semnani, D., Rafeinia, M. et al. The effect of electrospinning parameters on the compliance behavior of electrospun polyurethane tube for artificial common bile duct. Polym. Sci. Ser. A 59, 67–75 (2017). https://doi.org/10.1134/S0965545X17010114

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17010114