Abstract
The present research introduced a method to produce an artificial common bile duct using electrospinning technique. Also, the effect of electrospinning variables on the mechanical properties of produced prostheses is investigated. Using electrospinning of polyurethane nanofibres, cylindrical prostheses were produced on a rotating mandrel considering the different controllable factors such as the mandrel rotational speed, the applied voltage, and the flow rate of polymer solution. Taguchi method was used to investigate the effect of mentioned factors on the compliance of circular prostheses. MTT assay was performed to study the cytotoxicity of prostheses. The results of the signal-to-noise analysis showed that the mandrel rotational speed factor has the strongest effect on the compliance values. The flow rate was the second factor and it was followed by electrospinning voltage. In addition, the optimum conditions to reach the highest compliance value were determined. The results of MTT assay indicated no cytotoxic effects of prostheses on the cells. The compliance of optimum prosthesis was found close to the compliance value of a native common bile duct.
This is a preview of subscription content, access via your institution.
References
R. L. F. Cecil, L. Goldman, and A. I. Schafer, Goldman’s Cecil Medicine, Expert Consult Premium Edition-Enhanced Online Features and Print, Single Volume 24: Goldman’s Cecil Medicine (Elsevier Health Sci., Philadelphia, 2012).
J. Baerg, C. Zuppan, and M. Klooster, J. Pediatr. Surg. 39, 800 (2004).
K. D. Lillemoe, G. B. Melton, J. L. Cameron, H. A. Pitt, K. A. Campbell, M. A. Talamini, P. A. Sauter, J. Coleman, and C. J. Yeo, Ann. Surg. 232, 430 (2000).
R. W. Strong, Am. J. Surg. 177, 472 (1999).
V. Bettschart, R. Clayton, R. Parks, O. Garden, and C. Bellamy, Gut 51, 128 (2002).
Y. Cheng, Y. Lin, X. Xiong, S. Wu, J. Lu, and N. Cheng, J. Med. Hypotheses Ideas 6, 7 (2012).
C. A. Hardin and C. Kittle, Surgery 30, 834 (1951).
T. Bottger, B. Mann, B. Pickel, W. Weber, K. Sorger, and T. Junginger, Langenbecks Arch. Chir. 376, 77 (1991).
P. Sandblom, M. Tabrizian, M. Rigo, and A. Fluckiger, Surg., Gynecol. Obstet. 140, 425 (1975).
M. Ruka, W. Rowinski, M. Lipski, A. Wasiutynski, and W. Olszewski, Z. Exp. Chir., Transplant. Kunstliche Organe 20, 317 (1986).
D. S. Mendelowitz and J. M. Beal, Am. J. Surg. 143, 221 (1982).
N. A. Gómez, L. R. Alvarez, A. Mite, J. P. Andrade, J. R. Alvarez, P. E. Vargas, N. E. Tomalá, A. F. Vivas, and J. A. Zapatier, J. Gastrointest. Surg. 6, 116 (2002).
J. Theron, J. Knoetze, R. Sanderson, R. Hunter, K. Mequanint, T. Franz, P. Zilla, and D. Bezuidenhout, Acta Biomater. 6, 2434 (2010).
N. M. Lamba, K. A. Woodhouse, and S. L. Cooper, Polyurethanes in Biomedical Applications (CRC Press, New York, 1997).
W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res. 60, 613 (2002).
N. Detta, C. Errico, D. Dinucci, D. Puppi, D. A. Clarke, G. C. Reilly, and F. Chiellini, J. Mater. Sci.: Mater. Med. 21, 1761 (2010).
R. M. Nezarati, M. B. Eifert, D. K. Dempsey, and E. Cosgriff-Hernandez, J. Biomed. Mater. Res. Part B: Appl. Biomater. 103, 313 (2015).
J. Kucinska-Lipka, I. Gubanska, H. Janik, and M. Sienkiewicz, Mater. Sci. Eng., C 46, 166 (2015).
H. Bergmeister, C. Schreiber, C. Grasl, I. Walter, R. Plasenzotti, M. Stoiber, D. Bernhard, and H. Schima, Acta Biomater. 9, 6032 (2013).
N. Moazeni, D. Semnani, M. Latifi, and M. Sadrjahani, Procedia Mater. Sci. 11, 166 (2015).
J. Zhou, Y. Yang, X. Yin, Y. Xu, Y. Cao, and Q. Xu, Int. J. Artif. Organs 36, 121 (2013).
B. U. Duch, H. Andersen, and H. Gregersen, Biomed. Eng. Online 3, 23 (2004).
W.-J. Li, R. L. Mauck, J. A. Cooper, X. Yuan, and R. S. Tuan, J. Biomech. 40, 1686 (2007).
T. Stylianopoulos, C. A. Bashur, A. S. Goldstein, S. A. Guelcher, and V. H. Barocas, J. Mech. Behav. Biomed. Mater. 1, 326 (2008).
V. Milleret, B. Simona, P. Neuenschwander, and H. Hall, Eur. Cell. Mater. 21, 286 (2011).
G. Taguchi and Y. Yokoyama, Taguchi Methods: Design of Experiments (Amer. Supplier. Inst., Allen Park, 1993).
C. E. Ayres, B. S. Jha, H. Meredith, J. R. Bowman, G. L. Bowlin, S. C. Henderson, and D. G. Simpson, J. Biomater. Sci., Polym. Ed. 19, 603 (2008).
R. Jalili, M. Morshed, and S. A. H. Ravandi, J. Appl. Polym. Sci. 101, 4350 (2006).
F. Khoffi, F. Dieval, N. Chakfé, and B. Durand, Phys. Procedia 21, 234 (2011).
S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers (World Scientific, Singapore, 2005).
S. F. Fennessey and R. J. Farris, Polymer 45, 4217 (2004).
Author information
Authors and Affiliations
Corresponding author
Additional information
The article is published in the original.
Rights and permissions
About this article
Cite this article
Moazeni, N., Semnani, D., Rafeinia, M. et al. The effect of electrospinning parameters on the compliance behavior of electrospun polyurethane tube for artificial common bile duct. Polym. Sci. Ser. A 59, 67–75 (2017). https://doi.org/10.1134/S0965545X17010114
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0965545X17010114