Skip to main content
Log in

Effect of poly(ethylene glycol) on the dielectric properties of poly(vinylidene fluoride)/BiFeO3/poly(ethylene glycol) composite films for electronic applications

  • Composites
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

An Erratum to this article was published on 22 September 2017

This article has been updated

Abstract

In the present work a series of poly(vinylidene fluoride)/BiFeO3/poly(ethylene glycol) composite films were prepared by solvent casting method with poly(vinylidene fluoride) as polymer matrix, bismuth ferrite as ceramic filler and poly(ethylene glycol) as binding agent as well as enhancer. The structural analysis of the composite films by X-ray diffraction confirms that the composites have a distorted rhombohedral structure. The micro-structural analysis shows that the use of poly(ethylene glycol)in the composite films enhances the homogeneity as well as compatibility of BiFeO3 particles within the poly(vinylidene fluoride) matrix. The dielectric and electrical study done by impedance analyzer reveals that with an increase in poly(ethylene glycol) concentration, there is a subsequent increase in dielectric constant as well as AC electrical conductivity. Finally, the ferroelectric behavior of the composite confirms that the ferroelectric properties of the composites are enhanced by the addition of BiFeO3 with an increase in poly(ethylene glycol) concentrations. These preliminary results give an idea for possible applications of this type of composites in the field of electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 22 September 2017

    Captions to Figs. 4, 5, and 6 should read (1) Pure PVDF instead of (1) Pure BiFeO3.

References

  1. N. A. Spaldin and M. Fiebig, Science 309, 39 (2005).

    Article  Google Scholar 

  2. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).

    Article  CAS  Google Scholar 

  3. S. W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).

    Article  CAS  Google Scholar 

  4. S. Sharma, M. Tomar, A. Kumar, N. K. Puri, and V. Gupta, J. Phys. Chem. Solids 93, 63 (2016).

    Article  CAS  Google Scholar 

  5. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, J. Phys. C: Solid State Phys. 13, 193 (1980).

    Article  Google Scholar 

  6. M. Figbig, T. Lottermoser, D. Frohlich, A. V. Golstev, and R. V. Pisarev, Nature 419, 818 (2002).

    Article  Google Scholar 

  7. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).

    Article  CAS  Google Scholar 

  8. W. Sun, J. F. Li, Q. Yu, and L. Q. Cheng, J. Mater. Chem. C 3, 2115 (2015).

    Article  CAS  Google Scholar 

  9. M. D. Casper, M. D. Losego, and J. P. Maria, J. Mater. Sci. 48, 1578 (2012).

    Article  Google Scholar 

  10. P. A. Levkin, F. Svec, and J. M. Fréchet, Adv. Funct. Mater. 19, 1993 (2009).

    Article  CAS  Google Scholar 

  11. V. Sencadas, V. M. Moreira, S. L. Mendez, A. S. Pouzada, and R. Gregoria, Mater. Sci. Forum 514, 872 (2006).

    Article  Google Scholar 

  12. V. R. Palkar, J. John, and R. Pinto, Appl. Phys. Lett. 80, 1628 (2002).

    Article  CAS  Google Scholar 

  13. D. Bhadra, M.G. Masud, S. Sarkar, J. Sannigrahi, S. K. De, and B. K. Chaudhuri, J. Polym. Sci., Part B: Polym. Phys. 50, 572 (2012).

    Article  CAS  Google Scholar 

  14. S. C. Tjong and S. A. Xu, Polym. Int. 44, 95 (1997).

    Article  CAS  Google Scholar 

  15. S. C. Tjong, S. L. Liu, and R. K. Y. Li, J. Mater. Sci. 31, 479 (1996).

    Article  CAS  Google Scholar 

  16. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).

    Article  CAS  Google Scholar 

  17. H. Bea, M. Gajek, M. Bibes, and A. Barthelemy, J. Phys.: Condens. Matter 20, 434221 (2008).

    Google Scholar 

  18. D. M. Esterly and B. J. Love, J. Polym. Sci., Part B: Polym. Phys. 42, 91 (2004).

    Article  CAS  Google Scholar 

  19. S. Sharma, M. Tomar, A. Kumar, N. K. Puri, and V. Gupta, Physica B 448, 125 (2014).

    Article  CAS  Google Scholar 

  20. J. L. Mukherjee and F. F. Y. Wang, J. Am. Ceram. Soc. 54, 31 (1971).

    Article  CAS  Google Scholar 

  21. G. R. George, J. Silva, R. Castaneda, D. Lardizabal, O. A. Graeve, and L. Fuentes, Mater. Chem. Phys. 146, 73 (2014).

    Article  Google Scholar 

  22. S. Choudhary and R. J. Sengwa, Mater. Chem. Phys. 142, 172 (2013).

    Article  CAS  Google Scholar 

  23. D. K. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, Mater. Chem. Phys. 115, 557 (2009).

    Article  CAS  Google Scholar 

  24. M. F. Lin and P. S. Lee, J. Mater. Chem. A 1, 14455 (2013).

    Article  CAS  Google Scholar 

  25. V. K. Thakur, E. J. Tan, M. F. Lin, and P. S. Lee, J. Mater. Chem. 21, 3751 (2011).

    Article  CAS  Google Scholar 

  26. D. Bhadra, Md. G. Masud, S. Sarkar, J. Sannigrahi, S. K. De, and B. K. Chaudhuri, J. Polym. Sci., Part B: Polym. Phys. 50, 572 (2012).

    Article  CAS  Google Scholar 

  27. S. H. Zhang, N. Y. Huang, C. Huang, K. L. Ren, and Q. M. Zhang, Adv. Mater. 17, 1897 (2005).

    Article  CAS  Google Scholar 

  28. Q. Li, Q. Xue, Q. Zheng, L. Hao, and X. Gao, Mater. Lett. 62, 4229 (2008).

    Article  CAS  Google Scholar 

  29. M. Abdelaziz and E. M. Abdelrazek, J. Mater. Sci.: Mater. Electron. 25, 5481 (2014).

    CAS  Google Scholar 

  30. M. Mahesh Kumar, V. R. Palkar, K. Srinivas, and S. V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000).

    Article  Google Scholar 

  31. V. Panwar and R. M. Mehra, Eur. Polym. J. 44, 2367 (2008).

    Article  CAS  Google Scholar 

  32. F. D. C. Fim, N. R. S. Basso, A. P. Graebin, D. S. Azambuja, and G. B. Galland, J. Appl. Polym. Sci. 128, 2630 (2013).

    Article  CAS  Google Scholar 

  33. J. Zhu, W. Li, X. Huo, L. Li, L. Luo, and Y. Zhu, J. Phys. D: Appl. Phys. 48, 355301 (2015).

    Article  Google Scholar 

  34. H. C. Wang, Y. H. Lin, Y. N. Feng, and Y. Shen, J. Electroceram. 31, 271 (2013).

    Article  CAS  Google Scholar 

  35. A.K. Jonscher, Nature 267, 673 (1977).

    Article  CAS  Google Scholar 

  36. J. W. Wang, Q. D. Shen, H. M. Bao, C. Yang, and Q. M. Zhang, Macromolecules 38, 2247 (2005).

    Article  CAS  Google Scholar 

  37. E. S. Lim, J. C. Lee, J. J. Kim, E. T. Park, Y. K. Chung, and H. Y. Lee, Integr. Ferroelectr. 74, 53 (2005).

    Article  CAS  Google Scholar 

  38. N. Chilaka and S. Ghosh, Electrochim. Acta 134, 232 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Mahaling.

Additional information

The article is published in the original.

An erratum to this article is available at https://doi.org/10.1134/S0965545X17050212.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, M.K., Moharana, S., Dash, B. et al. Effect of poly(ethylene glycol) on the dielectric properties of poly(vinylidene fluoride)/BiFeO3/poly(ethylene glycol) composite films for electronic applications. Polym. Sci. Ser. A 59, 133–142 (2017). https://doi.org/10.1134/S0965545X17010102

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17010102

Navigation