Polymer Science, Series A

, Volume 58, Issue 5, pp 732–743 | Cite as

Phase-equilibrium and cellulose-coagulation kinetics for cellulose solutions in N-methylmorpholine-N-oxide

  • V. V. Makarova
  • S. V. Antonov
  • T. V. Brantseva
  • V. G. Kulichikhin
  • T. S. Anokhina
Natural Polymers


The dissolution of cellulose in N-methylmorpholine-N-oxide monohydrate and the dissolution of N-methylmorpholine-N-oxide monohydrate in water have been studied via optical interferometry. A part of the phase diagram for the cellulose/N-methylmorpholine-N-oxide system has been constructed. The phase diagram is characterized by crystalline equilibrium, hysteresis of the melting temperatures of the solvents, and a region of anisotropy. Optical interferometry has been used for the first time to study the kinetics of cellulose coagulation during the interaction of cellulose solutions in N-methylmorpholine-N-oxide with water and water solutions of N-methylmorpholine-N-oxide. Information on the values of interdiffusion coefficients and the morphologies of the resulting cellulose films has been obtained. The possibility to use optical interferometry to analyze the interaction of a solution with the coagulating agent in the case of cellulose fiber and film formation has been demonstrated. The influences of temperature, the nature of the coagulating agent, and the cellulose content on the kinetics of the process and morphologies of the formed films have been shown. The use of N-methylmorpholine-N-oxide as a part of the coagulation system decreases the rate of interdiffusion of solutions, thereby resulting in a more uniform and dense morphology of cellulose films. Increased temperature causes diffusion acceleration, thereby leading to the formation of an anisotropic morphology of the cellulose films.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Shokri and K. Adibkia, in Cellulose—Medical, Pharmaceutical and Electronic Applications, Ed. by Th. van de Ven and L. Godbout (InTech, Rijeka, 2013), Chap. 3.Google Scholar
  2. 2.
    A. J. Uddin, A. Yamamoto, Y. Gotoh, M. Nagura, and M. Iwata, Text. Res. J. 80 (17), 1846 (2010).CrossRefGoogle Scholar
  3. 3.
    J. Gao, L. G. Tang, Cellulose Science (Science Publ. Comp., Beijing, 1999).Google Scholar
  4. 4.
    X. Jie, Y. Cao, J.-J. Qin, J. Liu, and Q. Yuan, J. Membr. Sci. 246 (2), 157 (2005).CrossRefGoogle Scholar
  5. 5.
    Zh. Mao, X. Jie, Y. Cao, L. Wang, M. Li, and Q. Yuan, Sep. Purif. Technol. 77 (1), 179 (2011).CrossRefGoogle Scholar
  6. 6.
    B. Ma, A. Qin, X. Li, and Ch. He, Ind. Eng. Chem. Res. 52 (27), 9417 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Ichwan and T.-W. Son, J. Appl. Polym. Sci. 124 (2), 1409 (2012).CrossRefGoogle Scholar
  8. 8.
    H.-J. Li, Y.-M. Cao, J.-J. Qin, X.-M. Jie, T.-H. Wang, J.-H. Liu, and Q. Yuan, J. Membr. Sci. 279 (1–2), 328 (2006).CrossRefGoogle Scholar
  9. 9.
    J. Wu and Q. Yuan, J. Membr. Sci. 204 (1–2), 185 (2002).CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, H. Shao, Ch. Wu, and X. Hu, Macromol. Biosci. 1 (4), 141 (2001).CrossRefGoogle Scholar
  11. 11.
    M. Pan, W. Li, M. Wang, and Ch. You, Adv. Mater. Res. 538, 128 (2012).CrossRefGoogle Scholar
  12. 12.
    Y. Lu and Y. Wu, Front. Chem. Eng. China 2 (2), 204 (2008).CrossRefGoogle Scholar
  13. 13.
    S. Peng, H. Shao, and X. Hu, J. Appl. Polym. Sci. 90 (7), 1941 (2003).CrossRefGoogle Scholar
  14. 14.
    V. P. Khare, A. R. Greenberg, S. S. Kelley, H. Pilath, I. J. Roh, and J. Tyber, J. Appl. Polym. Sci. 105 (3), 1228 (2007).CrossRefGoogle Scholar
  15. 15.
    Y. Abe and A. Mochizuki, J. Appl. Polym. Sci. 89 (2), 333 (2003).CrossRefGoogle Scholar
  16. 16.
    X. Jie, Y. Cao, B. Lin, and Q. Yuan, J. Appl. Polym. Sci. 91 (3), 1873 (2004).CrossRefGoogle Scholar
  17. 17.
    O. Biganska and P. Navard, Cellulose 16 (2), 179 (2009).CrossRefGoogle Scholar
  18. 18.
    D. D. Grinshpan, Chemical Problems of Creation of Novel Materials and Technologies, Ed. by V. V. Sviridov (Belgosuniversitet, Minsk, 1998), Vol. 1, p. 87 [in Russian].Google Scholar
  19. 19.
    H.-P. Fink, P. Weigel, H. J. Purz, and J. Ganster, Prog. Polym. Sci. 26 (9), 1473 (2001).CrossRefGoogle Scholar
  20. 20.
    L. K. Golova, Ross. Khim. Zh. 46 (1), 49 (2002).Google Scholar
  21. 21.
    R. Gavillon, PhD Thesis (École Nationale Supérieure des Mines de Paris, Paris, 2007).Google Scholar
  22. 22.
    D. Duchemin, PhD Thesis (Mechanical Engineering University of Christchurch New Zealand, Canterbury, 2008).Google Scholar
  23. 23.
    V. A. Platonov, Yu. A. Belousov, N. S. Pozhalkin, I. D. Zenkov, and V. G. Kulichikhin, Khim. Volokna, No. 1, 27 (1983).Google Scholar
  24. 24.
    E. G. Kogan, V. A. Platonov, N. V. Vasil’eva, O. B. Balashova, and V. G. Kulichikhin, Khim. Volokna, No. 4, 30 (1984).Google Scholar
  25. 25.
    O. Biganska and P. Navard, Polymer 44 (4), 1035 (2003).CrossRefGoogle Scholar
  26. 26.
    J. Eckelt, T. Eich, T. Röder, H. Rüf, H. Sixta, and B. Wolf, Cellulose 16 (3), 373 (2009).CrossRefGoogle Scholar
  27. 27.
    H. Chanzy, M. Dube, and R. H. Marchessault, J. Polym. Sci. 17 (2), 219 (1979).Google Scholar
  28. 28.
    A. Ya. Malkin and A. E. Chalykh, Diffusion and Viscosity of Polymers. Measurement Techniques (Khimiya, Moscow, 1979) [in Russian].Google Scholar
  29. 29.
    V. Makarova and V. Kulichikhin, in Interferometry—Research and Applications in Science and Technology, Ed. I. Padron (InTech, Rijeka, 2011), Chap. 20, p. 395.Google Scholar
  30. 30.
    P. R. Laity, P. M. Glover, and J. N. Hay, Polymer 43 (22), 5827 (2002).CrossRefGoogle Scholar
  31. 31.
    O. Biganska and P. Navard, Biomacromolecules 6 (4), 1948 (2005).CrossRefGoogle Scholar
  32. 32.
    L. K. Golova, V. V. Romanov, O. B. Lunina, V. A. Platonov, S. P. Papkov, O. D. Khorozova, V. V. Yakshin, T. L. Belasheva, and A. N. Sokira, RF Patent No. 1645308 (1992).Google Scholar
  33. 33.
    A. N. Nakagaito and H. Yano, in Cellulose Based Composites: New Green Nanomaterials, Ed. by J. P. Hinestroza and A. N. Netravali (Wiley, Weinheim, 2014), p. 3.Google Scholar
  34. 34.
    A. E. Chalykh, Diffusion in Polymer Systems (Khimiya, Moscow, 1987) [in Russian].Google Scholar
  35. 35.
    V. G. Kulichikhin, V. V. Makarova, M. Yu. Tolstykh, and G. B. Vasil’ev, Polym. Sci., Ser. A 52 (11), 1196 (2010).CrossRefGoogle Scholar
  36. 36.
    Educational Learining Materials. Lectures on Technology of Polymer Membranes, 2011, p. 974 [in Russian].Google Scholar
  37. 37.
    S. P. Papkov, Jelly-Like State of Polymers (Khimiya, Moscow, 1974) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Makarova
    • 1
  • S. V. Antonov
    • 1
  • T. V. Brantseva
    • 1
  • V. G. Kulichikhin
    • 1
  • T. S. Anokhina
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations