Skip to main content

Aggregative behavior of AB and ABC block copolymers in the solid phase and in a nonselective solvent

Abstract

Effects of the amount of chemically dissimilar blocks (two or three) and their polarity on the aggregative behavior of АВ and АВС linear block copolymers of various compositions that are based on polystyrene, poly(n-butyl acrylate), and either poly(acrylic acid) or poly(tert-butyl acrylate) in bulk and in the nonselective solvent DMF are studied via differential scanning calorimetry and dynamic light scattering. АВ block copolymers composed of two chemically dissimilar blocks in the diluted solution in DMF are fully dispersed into macromolecular coils. However, the simultaneous incorporation of three incompatible blocks of different polarities (polystyrene, poly(acrylic acid), and poly(n-butyl acrylate)) into the copolymer is accompanied by a well-defined segregation of blocks in the nonselective solvent, regardless of the composition of the block copolymer and the length and sequence of blocks. This phenomenon makes itself evident as the formation of intermacromolecular aggregates in diluted solutions with a mean hydrodynamic radius of 60–120 nm that are stable in the range 10–60°C. A decrease in the level of the thermodynamic incompatibility of blocks (replacement of a poly(acrylic acid) polar block with a less polar poly(tert-butyl acrylate) block) or the selective improvement of solvent quality with respect to the polar block (the addition of LiBr to DMF) suppresses the segregation of blocks and may lead to the formation of a molecularly dispersed solution of the block copolymer.

This is a preview of subscription content, access via your institution.

References

  1. N. Hadjichristidis, S. Pispas, and G. Floudas, Block Copolymers: Synthesis Strategies, Physical Properties, and Applications (Wiley, Hoboken, 2003).

    Google Scholar 

  2. S. Forster and T. Plantenberg, Angew. Chem., Int. Ed. 41 (5), 688 (2002).

    Article  CAS  Google Scholar 

  3. T. Smart, H. Lomas, M. Massignani, M. V. Flores-Merino, L. R. Perez, and G. Battaglia, Nanotoday 3 (3–4), 38 (2008).

    Article  CAS  Google Scholar 

  4. R. Stadler, C. Auschra, J. Beckmann, U. Krappe, I. Voigt-Martin, L. Leibler, Macromolecules 28 (9), 3080 (1995).

    Article  CAS  Google Scholar 

  5. W. Zheng and Z.-G. Wan, Macromolecules 28 (21), 7215 (1995).

    Article  CAS  Google Scholar 

  6. G. Reiss, Prog. Polym. Sci. 28 (7), 1107 (2003).

    Article  Google Scholar 

  7. C.-A. Fustin, V. Abetz, and J.-F. Gohy, Eur. Phys. J. 16 (3), 291 (2005).

    CAS  Google Scholar 

  8. M. Duval, H. Haida, J. P. Lingelser, and Y. Gallot, Macromolecules 24 (26), 6867 (1991).

    Article  CAS  Google Scholar 

  9. Y. Matsushita, K. Shimizut, I. Noda, T. Chang, and C. C. Han, Polymer 33 (11), 2412 (1992).

    Article  CAS  Google Scholar 

  10. M. S. Kent, M. Tirrel, and T. P. Lodge, J. Polym. Sci., Polym. Phys. Ed. 32 (11), 1927 (1994).

    Article  CAS  Google Scholar 

  11. K. Edelmann, M. Janich, E. Hoinkis, W. Pyckhout- Hintzen, and S. Horing, Macromol. Chem. Phys. 202 (9), 1638 (2001).

    Article  CAS  Google Scholar 

  12. J. Yan, W. Ji, E. Chen, Z. Li, and D. Liang, Macromolecules 41 (13), 4908 (2008).

    Article  CAS  Google Scholar 

  13. F. Ke, X. Mo, R. Yang, Y. Wang, and D. Liang, Macromolecules 42 (14), 5339 (2009).

    Article  CAS  Google Scholar 

  14. O. Casse, A. Shkilnyy, J. Linders, C. Mayer, D. Haussinger, A. Volkel, A. F. Thunemann, R. Dimova, H. Colfen, W. Meier, H. Schlaad, and A. Taubert, Macromolecules 45 (11), 4772 (2012).

    Article  CAS  Google Scholar 

  15. E. V. Chernikova, D. V. Vishnevetskii, E. S. Garina, A. V. Plutalova, E. A. Litmanovich, B. A. Korolev, A. V. Shlyakhtin, Yu. V. Kostina, and G. N. Bondarenko, Polym. Sci., Ser. B 54 (3–4), 127 (2012).

    Article  CAS  Google Scholar 

  16. Polymer Handbook, Ed. by J. Brandrup, E. H. Immergut, and E. A. Grulke (Wiley, New York, 1999).

    Google Scholar 

  17. C. W. Tsimpris, B. Suryanar, and K. G. Mayhan, J. Polym. Sci., Polym. Phys. Ed. 10 (9), 1837 (1972).

    CAS  Google Scholar 

  18. B. Gantchev and M. Mihaiiov, Polym. Bull. 17 (2), 181 (1987).

    Article  CAS  Google Scholar 

  19. A. P. Safronov, A. A. Tager, and E. V. Koroleva, Polym. Sci., Ser. B 38 (5–6), 214 (1996).

    Google Scholar 

  20. M. Fernandez-Garcia, R. Cuervo-Rodriguez, and E. L. Madruga, J. Appl. Polym. Sci. 82 (1), 14 (2001).

    Article  CAS  Google Scholar 

  21. B. Ebeling and P. Vana, Polymers 3 (2), 719 (2011).

    Article  CAS  Google Scholar 

  22. A. E. Chalyh, U. V. Nikulova, and A. A. Scherbina, Polym. Sci., Ser. A 57 (4), 445 (2015).

    Article  Google Scholar 

  23. E. A. Litmanovich and E. M. Ivleva, Polym. Sci., Ser. A 52 (6), 671 (2010).

    Article  Google Scholar 

  24. T. Spychaj, M. Bohdanecký, and D. Berek, Acta Polym. 37 (2), 93 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Chernikova.

Additional information

Original Russian Text © D.V. Vishnevetski, E.A. Lysenko, A.V. Plutalova, E.V. Chernikova, 2016, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2016, Vol. 58, No. 1, pp. 3–14.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vishnevetski, D.V., Lysenko, E.A., Plutalova, A.V. et al. Aggregative behavior of AB and ABC block copolymers in the solid phase and in a nonselective solvent. Polym. Sci. Ser. A 58, 1–11 (2016). https://doi.org/10.1134/S0965545X16010120

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X16010120

Keywords

  • Block Copolymer
  • Hydrodynamic Radius
  • Butyl Acrylate
  • Microphase Separation
  • Aggregative Behavior