Advertisement

Polymer Science Series A

, Volume 57, Issue 6, pp 799–810 | Cite as

Poly(1-butene) as a modifier of polylactide properties

  • P. KucharczykEmail author
  • J. Kalous
  • P. Suly
  • N. Miskolczi
Polymer Blends

Abstract

This work investigates the effects of semicrystaline poly(1-butene) on amorphous polylactide in relation to mechanical, thermal and rheological properties. The blends were prepared by melt mixing, and poly(1-butene) content ranged from 5 to 40 wt %. It was found that 5 wt % poly(1-butene) heightened impact strength by more than double, however, other mechanical properties decreased. Poly(1-butene) significantly affected the glass transition temperature of polylactide, while the melting temperature of blends with 5 and 15 wt % poly(1-butene) slightly decreased. Thermogravimetric measurements revealed that the thermal stability of polylactide improved if poly(1-butene) was present, and rheological properties exhibited enhanced complex viscosity in combination with dynamic moduli.

Keywords

Differential Scanning Calorimetry Impact Strength Polymer Science Series Attenuate Total Reflectance LLDPE 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Utracki, Polymer Blends Handbook (Springer: Netherlands, 2014)CrossRefGoogle Scholar
  2. 2.
    M. Yousfi, J. Soulestin, B. Vergnes, M. Lacrampe, and P. Krawczak, Macromol. Mater. Eng. 298, 757 (2013).CrossRefGoogle Scholar
  3. 3.
    P. Svoboda, D. Svobodova, P. Slobodian, D. Merinska, Y Iizuka, T. Ougizawa, and T. Inoue, Eur. Polym. J. 45, 2434 (2009).CrossRefGoogle Scholar
  4. 4.
    G. E. Luckachan and C. K. S. Pillai, J. Polym. Environ. 19, 637 (2011).CrossRefGoogle Scholar
  5. 5.
    P. Stloukal, V. Verney, S. Commereuc, J. Rychly, L. Matisova-Rychla, V. Pis, and M. Koutny, Chemosphere 88, 1214 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Hrabalova, A. Gregorova, R. Wimmer, V. Sedlarik, M. Machovsky, and N. Mundigler, J. Appl. Polym. Sci. 118, 1534 (2010).Google Scholar
  7. 7.
    P. Stloukal, P. Kucharczyk, V. Sedlarik, P. Bazant, and M. Koutny, J. Agric. Food. Chem. 60, 4111 (2012).CrossRefGoogle Scholar
  8. 8.
    V. Sedlarik, O. Otgonzul, T. Kitano, A. Gregorova, M. Hrabalova, I. Junkar, U. Cvelbar, M. Mozetic, and P. Saha, J. Macromol. Sci. Phys. 51, 982 (2012).CrossRefGoogle Scholar
  9. 9.
    A. Gregorova, V. Sedlarik, M. Pastorek, H. Jachandra, and F. Stelzer, J. Polym. Environ. 19, 372 (2011).CrossRefGoogle Scholar
  10. 10.
    D. L. Kaplan, Biopolymers from Renewable Resources (Springer-Verlag, New York, 1998).CrossRefGoogle Scholar
  11. 11.
    A. Tor-Swiatek, Eksploat. Niezawodn. 15, 225 (2013).Google Scholar
  12. 12.
    J. Powers, J. D. Hoffman, J. J. Weeks, and F. A. Quinn, J. Res. Nat. Bur. Stand. Phys. Chem. 69A, 335 (1965).CrossRefGoogle Scholar
  13. 13.
    F. Azzurri, A. Flores, G. C. Alfonso, I. Sics, B. S. Hsiao, and F. J. B. Calleja, Polymer 44, 1641 (2003).CrossRefGoogle Scholar
  14. 14.
    H. Balakrishnan, A. Hassan, and M. U. Wahit, J. Elastomers Plast. 42, 223 (2010).CrossRefGoogle Scholar
  15. 15.
    K. Hamad, M. Kaseem, and F. Deri, Adv. Chem. Engineer. Sci. 1, 208 (2011).CrossRefGoogle Scholar
  16. 16.
    N. Ploypetchara, P. Suppakul, D. Atong, and C. Pechyen, Energy Procedia. 56, 201 (2014).CrossRefGoogle Scholar
  17. 17.
    P. Choudhary, S. Mohanty, S. K. Nayak, and L. Unnikrishnan, J. Appl. Polym. Sci. 121, 3223 (2011).CrossRefGoogle Scholar
  18. 18.
    Z. Hui, P. Sudhakara, Y. Wang, B. Kim, and J. Song, Composite Research 26, 273 (2013).CrossRefGoogle Scholar
  19. 19.
    L. T. Lim, R. A. Auras, and M. Rubino, Prog. Polym Sci. 33, 820 (2008).CrossRefGoogle Scholar
  20. 20.
    R. A. Auras, L. T. Lim, S. E. M. Selke, and H. Tsuji, Poly(lactic acid): Synthesis, Structures, Properties, Processing and Applications (John Wiley and Sons, USA, 2010).CrossRefGoogle Scholar
  21. 21.
    M. Ukita, Bull. Chem. Soc. Jpn. 39, 742 (1966).CrossRefGoogle Scholar
  22. 22.
    J. Shi, P. Wu, L. Li, T. Liu, and L. Zhao, Polymer 50, 5598 (2009).CrossRefGoogle Scholar
  23. 23.
    L. Chvátalová, L. Benícek, K. Berková, R. Cermák, M. Obadal, V. Verney, and S. Commereuc, J. Appl. Polym. Sci. 124, 3407 (2012).CrossRefGoogle Scholar
  24. 24.
    Y. Yomogida, H. Tsukada, Y. Li, and H. Shimizu, in Proceedings of 18th International Conference on Composite Materials, July 27th–July 31st, Edinburg, 2009.Google Scholar
  25. 25.
    Y. F. Kim, C. N. Choi, Y. D. Kim, K. Y. Lee, and M. S. Lee, Fiber. Polym. 5, 270 (2004).CrossRefGoogle Scholar
  26. 26.
    G. C. Alfonso, F. Azzuri, and M. J. Castellano, J. Therm. Anal. Calorim. 66, 197 (2001).CrossRefGoogle Scholar
  27. 27.
    J. Kalous, L. Benicek, and R. Cermak, Chem. Listy. 108, S21 (2014).Google Scholar
  28. 28.
    M. Kaszonyiova, F. Rybnikar, and P. H. Geil, J. Macromol. Sci. B 46, 195 (2007).CrossRefGoogle Scholar
  29. 29.
    S. Abedi and N. J. Sharifi-Sanjani, J. Appl. Polym. Sci. 78, 2533 (2000).CrossRefGoogle Scholar
  30. 30.
    A. Freeman, S. C. Mantell, and J. H. Davidson, Solar Energy 79, 624 (2005).CrossRefGoogle Scholar
  31. 31.
    B. S. Ndazi and S. Karlsson, S. Express Polym. Lett. 5, 119 (2011).CrossRefGoogle Scholar
  32. 32.
    D. Shumigin, E. Tarasova, A. Krumme, and P. Meier, Mater. Sci.-Medzg. 17, 1392 (2011).Google Scholar
  33. 33.
    Y.-Q. Zhao, F.-Q. Chen, Z.-H. Wu, Y.-H. Feng, and J.-P. Qu, J. Appl. Polym. Sci. 131, 40146 (2014).Google Scholar
  34. 34.
    F. Ardakani, Y. Jahani, and J. Morshedian, Polym. Eng. Sci. 54, 1747 (2014).CrossRefGoogle Scholar
  35. 35.
    J. K. Rameshwaram, Y. S. Yang, and H. S. Jeon, Polymer 46, 5569 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • P. Kucharczyk
    • 1
    Email author
  • J. Kalous
    • 1
  • P. Suly
    • 1
  • N. Miskolczi
    • 2
  1. 1.Centre of Polymer Systems, University InstituteTomas Bata University in ZlínZlínCzech Republic
  2. 2.University of Pannonia, Faculty of EngineeringInstitute of Chemical Engineering and Process Engineering, MOL Department of Hydrocarbon and Coal ProcessingVeszprémHungary

Personalised recommendations