Advertisement

Polymer Science Series A

, Volume 57, Issue 5, pp 586–595 | Cite as

Phase structure and properties of blends based on polystyrene and carbosilane dendrimers

  • O. A. Serenko
  • V. I. Roldugin
  • N. A. Novozhilova
  • M. A. Soldatov
  • G. G. Nikiforova
  • M. V. Mironova
  • S. O. Ilyin
  • V. G. Kulichikhin
  • A. M. Muzafarov
Polymer Blends

Abstract

Blends based on polystyrene and first- and third-generation carbosilane dendrimers with dimethyl(2-phenylethyl)silyl)propyl terminal groups are studied. For the same chemical structure of the outer layer, a change in the radii of nanoparticles from 0.9 to 2.0 nm entails a sharp decline in the rate of their mass transfer to the polymer bulk. Dendrimers of the first and third generations are characterized by substantially different compatibilities with polystyrene. It is assumed that this effect is associated with an increase in the energy of interaction between dendrimers. When dendrimers of the first generation are introduced into polystyrene, the viscosity, glass-transition temperature, and storage modulus decrease, while the filling of polystyrene with dendrimers of the third generation insignificantly affects these characteristics of the polymer.

Keywords

Glass Transition Temperature Storage Modulus Polymer Science Series Phase Behavior Polymer Bulk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Jancar, J. F. Douglas, F. W. Starr, S. K. Kumar, P. Cassagnau, A. J. Lesser, S. S. Sternstein, M. J. Buehler, Polymer 51 (15): 3321 (2010).CrossRefGoogle Scholar
  2. 2.
    M. M. Demir and G. Wegner, Macromol. Mater. Eng. 297 (9): 838 (2012).CrossRefGoogle Scholar
  3. 3.
    L. Ruiz-Perrez, G. J. Royston, J. P. A. Fairclough, and A. J. Ryan, Polymer 49 (21): 4475 (2008).CrossRefGoogle Scholar
  4. 4.
    M. Klapper, C. G. Clark, and K. Mullen, Polym. Int. 57 (2): 181 (2008).CrossRefGoogle Scholar
  5. 5.
    S. Kango, S. Susheel Kalia, A. Celli, J. Njugunad, Y. Youssef Habibi, R. Kumar, Prog. Polym. Sci. 38 (8): 1232 (2013).CrossRefGoogle Scholar
  6. 6.
    B. A. Rozenberg and R. Tenne, Prog. Polym. Sci. 33 (1): 40 (2008).CrossRefGoogle Scholar
  7. 7.
    Q. H. Zeng, A. B. Yu, and G. Q. Lu, Prog. Polym. Sci. 33 (2): 191 (2008).CrossRefGoogle Scholar
  8. 8.
    G. Allegra, G. Raos, and M. Vacatello, Prog. Polym. Sci. 33 (7): 683 (2008).CrossRefGoogle Scholar
  9. 9.
    V. Ganesan, C. J. Ellison, and V. Pryamitsyn, Soft Matter 6 (17): 4010 (2010).CrossRefGoogle Scholar
  10. 10.
    V. Ganesan and A. Jayaraman, Soft Matter 10 (1): 13 (2014).CrossRefGoogle Scholar
  11. 11.
    L. M. Hall, A. Jayaraman, and K. S. Schweizer, Curr. Opin. Solid State Mater. Sci. 14 (2): 38 (2010).CrossRefGoogle Scholar
  12. 12.
    Y. Rao, Particuology 8 (6): 549 (2010).CrossRefGoogle Scholar
  13. 13.
    D. Horn and R. J. Organische, Angew. Chem. 113 (23): 4460 (2001).CrossRefGoogle Scholar
  14. 14.
    G. J. Fleer and R. Tuinier, Adv. Colloid Interface Sci. 143 (1–2), 1 (2008).CrossRefGoogle Scholar
  15. 15.
    J. B. Hooper and K. S. Schweizer, Macromolecules 38 (21): 8858 (2005).CrossRefGoogle Scholar
  16. 16.
    N. Jouault, F. Dalmas, F. Boue, and J. Jestin, Polymer 53 (3): 761 (2012).CrossRefGoogle Scholar
  17. 17.
    M. Bailly, M. Kontopoulou, and K. El. Mabrouk, Polymer 51 (23): 5506 (2010).CrossRefGoogle Scholar
  18. 18.
    M. E. Mackay, A. Tuteja, P. M. Duxbury, C. J. Haker, B. V. H. Horn, Z. Guan, G. Chen, R. S. Krishnan, Science 311 5768, 1740 (2006).CrossRefGoogle Scholar
  19. 19.
    A. R. Luzuriaga, A. Etxeberria, J. Rodriguez, and J. A. Pomposo, Polym. Adv. Technol. 19 (7): 756 (2008).CrossRefGoogle Scholar
  20. 20.
    A. L. Frischknecht, E. S. McGarrity, and M. E. Mackay, J. Chem. Phys. 132 (20): 204901 (2010).CrossRefGoogle Scholar
  21. 21.
    E. A. Karpukhina, S. O. Il’in, V. V. Makarova, I. B. Meshkov, V. G. Kulichikhin, Polym. Sci., Ser. A 56 (6): 798 (2014).CrossRefGoogle Scholar
  22. 22.
    A. Karim, K. Yurekli, C. Meredith, E. Amis, R. Krishnamoorti, Polym. Eng. Sci. 42 (9): 1836 (2002).CrossRefGoogle Scholar
  23. 23.
    O. A. Serenko, V. G. Shevchenko, A. V. Zhil’tsov, V. E. Chuprakov, T. V. Zaderenko, O. T. Gritsenko, M. V. Mironova, O. B. Gorbatsevich, V. V. Kazakova, V. G. Kulichikhin, A. M. Muzafarov, Nanotechnol. Russ. 8 (1–2), 81 (2013).CrossRefGoogle Scholar
  24. 24.
    M. Seiler, Chem. Eng. Technol. 25 (3): 237 (2001).CrossRefGoogle Scholar
  25. 25.
    A. M. Muzafarov, N. G. Vasilenko, E. A. Tatarinova, G. M. Ignat’eva, V. M. Myakushev, M. A. Obrezkova, I. B. Meshkov, N. V. Voronina, O. V. Novozhilov, Polym. Sci., Ser. C 53 (1): 48 (2011).CrossRefGoogle Scholar
  26. 26.
    G. M. Ignat’eva, E. A. Rebrov, V. D. Myakushev, A. M. Muzafarov, M. N. Il’ina, I. I. Dubovik, V. S. Papkov, Vysokomol. Soedin., Ser. A 39 (8): 1302 (1997).Google Scholar
  27. 27.
    N. A. Novozhilova, O. A. Serenko, V. I. Roldugin, A. A. Askadskii, A. M. Muzafarov, Silicon 7 (2): 155 (2015).CrossRefGoogle Scholar
  28. 28.
    Z. Grubisic, R. Rempp, and H. Benoit, J. Polym. Sci., Polym. Phys. Ed. 34 (10): 1707 (1996).CrossRefGoogle Scholar
  29. 29.
    N. V. Voronina, E. A. Tatarinova, A. V. Bystrova, G. M. Ignat’eva, V. D. Myakushev, A. M. Muzafarov, Polym. Prepr. 50 (2): 487 (2009).Google Scholar
  30. 30.
    A. Ya. Malkin, A. E. Chalykh, V. V. Kovriga, and A. A. Askadsky, Experimental methods of polymer physics (Measurement of mechanical properties, viscosity and diffusion) (Mir, Moscow, 1983).Google Scholar
  31. 31.
    G. Romeo, G. Filippone, A. Fernandez-Nieves, P. Russo, D. Acierno, Rheol. Acta 47 (9): 989 (2008).CrossRefGoogle Scholar
  32. 32.
    A. Zohrevand, A. Ajji, and F. Mighri, Rheol. Acta 53 (3): 235 (2014).CrossRefGoogle Scholar
  33. 33.
    J. Stoelting, F. E. Karasz, and W. J. Macknicht, Polym. Eng. Sci. 10 (3): 133 (1970).CrossRefGoogle Scholar
  34. 34.
    U. Yamamoto and U. K. Schweize, J. Chem. Phys. 135 (22): 224902 (2011).CrossRefGoogle Scholar
  35. 35.
    A. N. Nesterov, Properties of Polymer Solutions and Blends (Naukova Dumka, Kiev, 1984), Vol. 1.Google Scholar
  36. 36.
    J. P. Cotton, D. Decker, H. Benoit, B. Farnoux, J. Higgins, G. Jannink, R. Ober, C. Picot, J. Cloizeaux, Macromolecules 7 (6): 863 (1974).CrossRefGoogle Scholar
  37. 37.
    A. Takano, Y. Ohta, K. Masuoka, K. Matsubara, T. Nakano, A. Heino, M. Itakura, K. Takahashi, S. Kinugasa, D. Kawaguchi, Y. Takahashi, Y. Matsushita, Macromolecules 45 (11): 369 (2012).CrossRefGoogle Scholar
  38. 38.
    A. Tuteja and M. E. Mackay, Nano Lett. 7 (5): 1276 (2007).CrossRefGoogle Scholar
  39. 39.
    J. N. Izraelashvili, Intermolecular and Surface Forces (Academic Press, Amsterdam, 1991).Google Scholar
  40. 40.
    A. Christopher, C. A. Grabowski, and A. Mukhopadhyay, Macromolecules 47 (20): 7238 (2014).CrossRefGoogle Scholar
  41. 41.
    A. Bymaster, S. Shekhar Jain, and W. G. Chapman, J. Chem. Phys. 128 (16): 164910 (2008).CrossRefGoogle Scholar
  42. 42.
    V. I. Roldugin, O. A. Serenko, E. V. Getmanova, N. A. Karmishina, S. N. Chvalun, A. M. Muzafarov, Dokl. Phys. Chem. 449 (2): 83 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • O. A. Serenko
    • 1
  • V. I. Roldugin
    • 2
  • N. A. Novozhilova
    • 3
  • M. A. Soldatov
    • 3
  • G. G. Nikiforova
    • 1
  • M. V. Mironova
    • 4
  • S. O. Ilyin
    • 4
  • V. G. Kulichikhin
    • 4
  • A. M. Muzafarov
    • 1
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia
  4. 4.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations