Skip to main content
Log in

Thermo-electric power study of polypyrrole/molybdenum trioxide composites

  • Composites
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

In situ polymerization of pyrrole initiated by ammonium persulphate was carried out in the presence of molybdenum trioxide by the chemical oxidation method. The obtained composites containing various amounts of molybdenum trioxide (up to 50 wt %) exhibit semi-crystalline behavior. FTIR-spectroscopy showed that the stretching frequencies are shifted towards the higher frequency side. The surface morphologies of these composites studied using SEM indicates that molybdenum trioxide particles are embedded in polypyrrole chain to form multiple phases. Thermal analysis also implies that the composites have stronger stability than the pure polypyrrole. The dimensions of molybdenum trioxide particles in the matrix have a significant influence on the thermo-electric power values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Conducting Polymers Third Edition Conjugated Polymers, Ed. by A. T. Skotheim and R. J. Reynolds, (CRC Press Inc, USA, 2006).

    Google Scholar 

  2. M. H. Harun, E. Saion, A. Kassim, N. Yahya, E. Mahmud, J. Agric. Sci. Appl. 2, 63, (2007).

    Google Scholar 

  3. G. Inzelt, J. Solid State Electrochem. 15, 1711 (2011).

    Article  CAS  Google Scholar 

  4. J. L. Bredas and G.B. Street, Acc. Chem. Res. 18, 309 (1985).

    Article  CAS  Google Scholar 

  5. Molybdenum, CRC Handbook of Chemistry and Physics, Ed. by R. L. David, (Chemical Rubber Publishing Company, Boca Raton, 1994).

    Google Scholar 

  6. A. F. Wells, Structural Inorganic Chemistry (Clarendon Press, Oxford, 1984).

    Google Scholar 

  7. F. F. Ferreira., T. G. S. Cruz, M. C. A. Fantini, M. H. Tabacniks, S. C. de Castro, J. Morais, A. de Siervo, and R. Landers, Solid State Ionics 357, 136 (2000).

    Google Scholar 

  8. Z. Cordt, G. Kai, W. Peter, and G. J. Peter, Mater. Sci. Eng., C 32, 47 (2012).

    Article  Google Scholar 

  9. D. M. Jundale, S. T. Navale, G. D. Khuspe, D. S. Dalavi, P. S. Patil, and V. B. Patil, J. Mater. Sci.: Mater. Electron. 24, 3526 (2013).

    CAS  Google Scholar 

  10. D. S. Madddison and J. Unsworth, Synth. Met. 26, 99 (1988).

    Article  Google Scholar 

  11. J. Harreld, H. P. Wong, B. C. Dave, B. Dunn, and L. F. Nazar, J. Non-Cryst. Solids 225, 319 (1998).

    Article  CAS  Google Scholar 

  12. B. V. Chaluvaraju, K. Ganiger Sangappa and M. V. Murugendrappa, IJLTEMAS, III(V), 33, (2014).

    Google Scholar 

  13. M. V. Murugendrappa and M. V. N. Ambika Prasad, J. App. Polym. Sci. 103, 2797 (2007).

    Article  CAS  Google Scholar 

  14. B. V. Chaluvaraju, K. Ganiger Sangappa and M. V. Murugendrappa, Polym. Sci., Ser. B 56(6), 935 (2014).

    Article  CAS  Google Scholar 

  15. B. Su, S. Min, S. She, Y. Tong, J. Bai, Front. Chem. China 2(2), 123 (2007).

    Article  Google Scholar 

  16. Y. Haldorai, V. H. Nguyen, and J.-J. Shim, Colloid Polym. Sci. 289, 849 (2011).

    Article  CAS  Google Scholar 

  17. H. Yilmaz, H. Zengin, and H. I. Unal, J. Mater. Sci. 47, 5276 (2012).

    Article  CAS  Google Scholar 

  18. L. Li, K. Xia, L. Li, S. Shang, Q. Guo, and G. Yan, J. Nanopart. Res. 14, 908 (2012).

    Article  Google Scholar 

  19. M. S. Rather, K. Majid, R. K. Wanchoo, and M. L. Singla, J. Therm. Anal Calorim. 112, 893 (2013).

    Article  CAS  Google Scholar 

  20. S. A. Kumar, A. P. Singh, P. Saini, F. Khatoon, S. K. Dhawan, J. Mater. Sci. 47, 2461 (2012).

    Article  Google Scholar 

  21. H. Wang, N. Leaukosol, Z. He, G. Fei, C. Si, Y. Ni, Cellulose 20, 1587 (2013).

    Article  CAS  Google Scholar 

  22. K. L Levine and J. OIroh, J. Porous Mater. 11, 87 (2004).

    Article  CAS  Google Scholar 

  23. S. Kazim, S. Ahmad, J. Pfleger, J. Plestil, Y. M. Joshi, J. Mater. Sci. 47, 420 (2012).

    Article  CAS  Google Scholar 

  24. D. Zhang, L. Fu, L. Liao, N. Liu, B. Dai, C. Zhang, Nano Res. 5(12), 875 (2012).

    Article  CAS  Google Scholar 

  25. Y. Kobayashi, S. Ishida, K. Ihara, Y. Yasuda, T. Morita, S. Yamada, Colloid Polym. Sci. 287, 877 (2009).

    Article  CAS  Google Scholar 

  26. P. Liu, Y. Wang, X. Wang, C. Yang, Y. Yi, J. Nanopart. Res. 14, 1232 (2012).

    Article  Google Scholar 

  27. K. Mallick, M. J. Witcomb, and M. S. Scurrell, J. Mater. Sci. 41, 6189 (2006).

    Article  CAS  Google Scholar 

  28. P. S. Kishore, B. Viswanathan, and T. K. Varadarajan, Nanoscale Res. Lett. 3, 14 (2008).

    Article  CAS  Google Scholar 

  29. V. S. R. Channu and R. Holze, Ionics 18, 495 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Murugendrappa.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaluvaraju, B.V., Ganiger Sangappa, K. & Murugendrappa, M.V. Thermo-electric power study of polypyrrole/molybdenum trioxide composites. Polym. Sci. Ser. A 57, 467–472 (2015). https://doi.org/10.1134/S0965545X15040057

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X15040057

Keywords

Navigation