Polymer Science Series A

, Volume 57, Issue 1, pp 43–51 | Cite as

Features of the structural organization and sorption properties of cellulose

  • L. Yu. Grunin
  • Yu. B. GruninEmail author
  • V. I. Talantsev
  • E. A. Nikolskaya
  • D. S. Masas
Natural Polymers


Modern concepts about the structural organization of cellulose and the character of formation of its inter- and intermolecular hydrogen bonds are analyzed. A scheme for the structure of the cellulose microfibril that supposes the presence of slit-shaped micropores in its structure is proposed. The proton magnetic relaxation study of sorption processes reveals that, at a moisture content of 7–10%, the filling of cellulose micropores occurs with a concomitant increase in their lateral sizes and decreases in the degrees of crystallinity of samples.


Cellulose Polymer Science Series Spin Relaxation Sorption Property Cellulose Microfibril 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. P. Delmer and Y. Amor, Plant Cell 7, 987 (1995).CrossRefGoogle Scholar
  2. 2.
    N. C. Carpita, Plant Physiol. 155(1), 171 (2011).CrossRefGoogle Scholar
  3. 3.
    Yu. B. Grunin, L. Yu. Grunin, E. A. Nikolskaya, and V. I. Talantsev, Polym. Sci., Ser. A 54(3), 201 (2012).CrossRefGoogle Scholar
  4. 4.
    Z. A. Rogovin, Cellulose Chemistry (Khimiya, Moscow, 1972).Google Scholar
  5. 5.
    D. L. VanderHart and R. H. Atalla, Macromolecules 17, 1465 (1984).CrossRefGoogle Scholar
  6. 6.
    Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc. 124, 9074 (2002).CrossRefGoogle Scholar
  7. 7.
    Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan, J. Am. Chem. Soc. 125, 14300 (2003).CrossRefGoogle Scholar
  8. 8.
    H. Chanzy, Cellulose Sources and Exploitation. Industrial Utilisation, Biotechnology and Physic Chemical Properties (Ellis Horwood, New York, 1990).Google Scholar
  9. 9.
    K. Mazeau, Carbohydr. Polym. 84(4), 524 (2011).CrossRefGoogle Scholar
  10. 10.
    Y. Nishiyama, G. P. Johnson, A. D. French, V. T. Forsyth, and P. Langan, Biomacromolecules 9(11), 3133 (2008).CrossRefGoogle Scholar
  11. 11.
    J. Wohlert, M. Bergenstrahle-Wohlert, and L. A. Berglund, Cellulose 19, 1821 (2012).CrossRefGoogle Scholar
  12. 12.
    Y. Nishiyama, J. Wood Sci. 55, 241 (2009).CrossRefGoogle Scholar
  13. 13.
    N. I. Nikitin, Chemistry of Wood and Cellulose (Inst. Macromol. Comp. AN USSR, Leningrad, 1962) [in Russian].Google Scholar
  14. 14.
    Q. Li and S. Renneckar, Biomacromolecules 12(3), 650 (2011).CrossRefGoogle Scholar
  15. 15.
    M. Ibrahim and H. Mondal, Cellulose 20, 1073 (2013).CrossRefGoogle Scholar
  16. 16.
    Yu. B. Grunin, L. Yu. Grunin, E. A. Nikol’skaya, V. I. Talantsev, and G. Sh. Gogelashvili, Russ. J. Phys. Chem. A 87(1), 100 (2013).CrossRefGoogle Scholar
  17. 17.
    H. R. Tang and P. S. Bellton, Solid State Nucl. Magn. Reson. 21, 117 (2002).CrossRefGoogle Scholar
  18. 18.
    V. P. Nikolaev, A. A. Ageev, and Yu. G. Frolov, Tr. Moskovskogo Khim.-Tekhn. In-ta im. D.I. Mendeleeva, No. 101, 84 (1978).Google Scholar
  19. 19.
    Resonance Systems Ltd.
  20. 20.
    V. I. Chizhik, Nuclear Magnetic Relaxation (St. Petersburg State Univ., St. Petersburg, 2004) [in Russian].Google Scholar
  21. 21.
    A. Abragam, Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961; Nauka, Moscow, 1963).Google Scholar
  22. 22.
    V. V. Mank and N. I. Lebovka, NMR Spectroscopy of water in Heterogeneous Systems (Naukova dumka, Kiev, 1988) [in Russian].Google Scholar
  23. 23.
    Yu. B. Grunin, Doctoral Dissertation in Chemistry (IKhD AN, Riga, 1989).Google Scholar
  24. 24.
    N. Bikales and L. Segal, Cellulose and Cellulose Derivatives (Wiley-Interscience, New York, 1971; Mir, Moscow, 1974), Vols. IV–V.Google Scholar
  25. 25.
    T. P. Shcherbakova, N. E. Kotel’nikova, and Yu. V. Bykhovtseva, Russ. J. Bioorg. Chem. 38(7), 689 (2012).CrossRefGoogle Scholar
  26. 26.
    M. M. Dubinin, Zh. Phiz. Khim., No. 5, 1301 (1987).Google Scholar
  27. 27.
    R. J. Maurer, A. F. Sax, and V. Ribitsch, Cellulose 20, 25 (2013).CrossRefGoogle Scholar
  28. 28.
    H. Ono, H. Yamada, S. Matsuda, K. Okajima, T. Kawamoto, and H. Iijima, Cellulose 5, 231 (1998).CrossRefGoogle Scholar
  29. 29.
    S. J. Gregg and K. S. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic Press, Inc., London, 1982; Mir, Moscow, 1984).Google Scholar
  30. 30.
    T. Yamashiki, T. Matsui, M. Saitoh, Y. Matsuda, K. Okajima, K. Kamide, and T. Sawada, Br. Polym. J. 22(3), 201 (1990).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • L. Yu. Grunin
    • 1
  • Yu. B. Grunin
    • 1
    Email author
  • V. I. Talantsev
    • 1
  • E. A. Nikolskaya
    • 2
  • D. S. Masas
    • 1
  1. 1.Volga State University of TechnologyYoshkar-OlaMari El, Russia
  2. 2.University of Eastern FinlandKuopioFinland

Personalised recommendations