Skip to main content
Log in

Phase behavior of compressible melts of multiblock polydisperse copolymers

  • Theory and Simulation
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

In terms of the previously proposed model, specific features of the phase behavior of Markovian polydisperse copolymers with allowance for their compressibility have been investigated via bifurcation analysis followed by continuation with respect to a parameter that characterizes the deviation of the temperature of the system from its value on the spinodal. These features above all include competition between microphase separation and macrophase separation under conditions when the local instability of the homogeneous state appearing at the spinodal corresponds to the macrophase separation only. Nevertheless, it was shown that depending on the structural parameters, the global instability characterized by a cloud-point hypersurface can result in either macrophase or microphase separation, with the microphase separation occurring in the vicinity of the critical point. In this case, the results are consistent with the conclusions of the Landau theory of phase transitions, whose applicability limits with respect to deviation from the critical point have been evaluated in this study. Outside the range of applicability of this theory, cloud-point curves that correspond to macrophase separation and microphase separation are very similar. These conclusions remain valid over a wide range of compressibility whose influence has been assessed for the first time. It has been found that the type of copolymers under consideration has a characteristic feature that was not noticed previously: Namely, the distribution of density in the nucleus of a new phase in this case will look like a spatially localized solitonlike profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. W. Hamley, The Physics of Block Copolymers (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  2. V. Castelletto and I. W. Hamley, Curr. Opin. Solid State Mater. Sci. 8, 426 (2004).

    Article  CAS  Google Scholar 

  3. V. Abetz and P. F. W. Simon, Adv. Polym. Sci. 189, 125 (2005).

    Article  CAS  Google Scholar 

  4. M. Li, C. A. Coenjarts, and C. K. Ober, Adv. Polym. Sci. 190, 183 (2005).

    Article  CAS  Google Scholar 

  5. M. Li and C. K. Ober, Mater. Today 9(9), 30 (2006).

    Article  CAS  Google Scholar 

  6. S. Krishnamoorthy, C. Hinderling, and H. Heinzelmann, Mater. Today 9(9), 40 (2006).

    Article  CAS  Google Scholar 

  7. V. Castelletto and I. W. Hamley, in Physical Properties of Polymers, Ed. by M. James (Springer, Berlin, 2007), p. 641.

  8. T. Smart, H. Lomas, M. Massignani, M. Flores-Merino, L. R. Perez, and G. Bataglia, Nano Today 3(3–4), 38 (2008).

    Article  CAS  Google Scholar 

  9. K. Binder, Adv. Polym. Sci. 112, 181 (1994).

    Article  CAS  Google Scholar 

  10. G. H. Fredrickson and F. S. Bates, Annu. Rev. Mater. Sci. 26, 501 (1996).

    Article  CAS  Google Scholar 

  11. F. S. Bates and G. H. Fredrickson, in Thermoplastic Elastomers, Ed. by G. Holden, N. R. Legge, R. Quirk, and H. E. Schroeder (Hanser, New York, 1996), p. 336.

  12. R. Holyst and T. A. Vilgis, Macromol. Theory Simul. 5, 573 (1996).

    Article  CAS  Google Scholar 

  13. S. I. Kuchanov and S. V. Panyukov, in Comprehensive Polymer Science. Second Suppl., Ed. by G. Allen (Pergamon, New York, 1996), p. 441.

  14. V. S. Pande, A. Yu. Grosberg, and T. Tanaka, Rev. Mod. Phys. 72, 259 (2000).

    Article  CAS  Google Scholar 

  15. G. H. Fredrickson, Equilibrium Theory of Inhomogeneous Polymers (Oxford Univ. Press, New York, 2006).

    Google Scholar 

  16. M. W. Matsen, in Soft Matter, Ed. by G. Gompper and M. Shick (Wiley, Weinheim, 2006), Vol. 1, p. 1.

  17. S. I. Kuchanov, Macromol. Symp. 252, 76 (2007).

    Article  CAS  Google Scholar 

  18. M. W. Matsen and M. Schick, Phys. Rev. Lett. 27, 2660 (1994).

    Article  Google Scholar 

  19. S. W. Sides and G. H. Fredrickson, J. Chem. Phys. 121, 4974 (2004).

    Article  CAS  Google Scholar 

  20. M. W. Matsen, Eur. Phys. J. E 21, 199 (2006).

    Article  CAS  Google Scholar 

  21. D. M. Cooke and A.-C. Shi, Macromolecules 39, 6661 (2006).

    Article  CAS  Google Scholar 

  22. M. W. Matsen, Phys. Rev. Lett. 99, 148304 (2007).

    Article  CAS  Google Scholar 

  23. A. N. Ivanova, S. I. Kuchanov, and L. I. Manevitch, J. Math. Phys. 46, 013301 (2005).

    Article  Google Scholar 

  24. A. N. Ivanova, S. I. Kuchanov, and L. I. Manevich, Polym. Sci., Ser. A 47, 631 (2005).

    Google Scholar 

  25. A. N. Ivanova and L. I. Manevich, Comput. Math. Math. Phys. 51, 650 (2011).

    Article  Google Scholar 

  26. S. I. Kuchanov, A. N. Ivanova, and L. I. Manevich, Polym. Sci., Ser. A 54, 426 (2012).

    Article  CAS  Google Scholar 

  27. S. V. Panyukov and S. I. Kuchanov, Zh. Eksp. Teor. Fiz. 99, 659 (1991).

    CAS  Google Scholar 

  28. S. V. Panyukov and S. I. Kuchanov, J. Phys. II France 2, 1973 (1992).

    Article  CAS  Google Scholar 

  29. M. M. Vainberg and V. A. Trenogin, Theory of Branching of Nonlinear Differential Equations (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  30. V. I. Shalashilin and E. B. Kuznetsov, Method of Solution Continuation by Parameter and the Optimal Parameterization (URSS, Moscow, 1999) [in Russian].

    Google Scholar 

  31. L. I. Manevich, Nonlinear Normal Modes and Solitons (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. A. Shaginyan.

Additional information

Original Russian Text © A.N. Ivanova, S.I. Kuchanov, Sh.A. Shaginyan, L.I. Manevich, 2014, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2014, Vol. 56, No. 4, pp. 439–451.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, A.N., Kuchanov, S.I., Shaginyan, S.A. et al. Phase behavior of compressible melts of multiblock polydisperse copolymers. Polym. Sci. Ser. A 56, 522–533 (2014). https://doi.org/10.1134/S0965545X14040087

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X14040087

Keywords

Navigation