Advertisement

Polymer Science Series A

, Volume 56, Issue 4, pp 558–567 | Cite as

Computer simulation of the heat-resistant polyimides ULTEM™ and EXTEM™ with the use of GROMOS53a6 and AMBER99 force fields

  • S. G. Fal’kovich
  • S. V. Larin
  • V. M. Nazarychev
  • I. V. Volgin
  • A. A. Gurtovenko
  • A. V. Lyulin
  • S. V. Lyulin
Theory and Simulation

Abstract

An atomistic computer simulation was performed for the polyimides ULTEM™ and EXTEM™ via the molecular-dynamics method with the use of Gromos53a6 and Amber99 force fields. For parameterization of electrostatic interactions, the partial atomic charges were calculated through quantum-chemical methods. The temperature dependence of density and the thermal-expansion coefficients for the polyimides were obtained. The calculated density values of the polyimides at room temperature and their coefficients of thermal expansion in the glassy state are in agreement with available experimental data. It is shown that inclusion of electrostatic interactions is necessary for simulation of the thermophysical characteristics of the considered polyimides.

Keywords

Electrostatic Interaction Force Field Polyimide Polymer Science Series Partial Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polyimides: A Class of Thermally Stable Polymers, Ed. by M. I. Bessonov (Nauka, Leningrad, 1983).Google Scholar
  2. 2.
    Polyimides: Fundamentals and Applications, Ed. by M. K. Ghash and K. L. Mittal (Marcel Dekker, New York, 1996).Google Scholar
  3. 3.
    H. Ohya, V. V. Kudryavtsev, and S. I. Semenova, Polyimide Membranes: Applications, Fabrication and Properfties (Tokyo; Amsterdam: Kodansha Ltd., Gordon and Breach Sci. Publ. S.A. (1996).Google Scholar
  4. 4.
    M. J. M. Abadie and A. L. Rusanov, Practical Guide to Polyimides (Smithers Rapra Technology, Shawbury, 2007).Google Scholar
  5. 5.
    X.-Y. Wang, P. J. Veld, Y. Lu, B. D. Freeman, and I. C. Sanchez, Polymer 46, 9155 (2005).CrossRefGoogle Scholar
  6. 6.
    J. Xia, S. Liu, P. K. Pallathadka, M. L. Chang, and T. Chung, Ind. Eng. Chem. Res. 49, 12014 (2010).CrossRefGoogle Scholar
  7. 7.
    K. Binder, J. Baschnagel, and W. Paul, Prog. Polym. Sci. 28, 115 (2003).CrossRefGoogle Scholar
  8. 8.
    J.-L. Barrat, J. Baschnagel, and A. Lyulin, Soft Matter 6, 3430 (2010).CrossRefGoogle Scholar
  9. 9.
    K. Binder, Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford Univ. Press, Oxford, 1995).Google Scholar
  10. 10.
    S. Neyertz and D. Brown, Macromolecules 41, 2711 (2008).CrossRefGoogle Scholar
  11. 11.
    O. Hölck, M. Heuchel, M. Böhning, and D. J. Hofmann, J. Polym. Sci., Part B: Polym. Phys. 46, 59 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Heuchel, D. Hofmann, and P. Pullumbi, Macromolecules 37, 201 (2004).CrossRefGoogle Scholar
  13. 13.
    S. Neyertz, A. Douanne, and D. Brown, J. Membr. Sci. 280, 517 (2006).CrossRefGoogle Scholar
  14. 14.
    S. Neyertz, A. Douanne, and D. Brown, Macromolecules 38, 10286 (2005).CrossRefGoogle Scholar
  15. 15.
    S. Neyertz and D. Brown, Macromolecules 37, 10109 (2004).CrossRefGoogle Scholar
  16. 16.
    S. Neyertz and D. Brown, Macromolecules 42, 8521 (2009).CrossRefGoogle Scholar
  17. 17.
    S. Pandiyan, D. Brown, S. Neyertz, and N. F. A. Van der Vegt, Macromolecules 43, 2605 (2010).CrossRefGoogle Scholar
  18. 18.
    S. Neyertz, D. Brown, S. Pandiyan, and N. F. A. Van der Vegt, Macromolecules 43, 7813 (2010).CrossRefGoogle Scholar
  19. 19.
    S. Neyertz, Macromol. Theory Simul. 16, 513 (2007).CrossRefGoogle Scholar
  20. 20.
    S. Velio lu, M. G. Ahunbay, and S. B. Tantekin-Ersolmaz, J. Membr. Sci. 417–418, 217 (2012).Google Scholar
  21. 21.
    M. Minellia, M. G. De Angelisa, and D. Hofmann, Fluid Phase Equilib. 333, 87 (2012).CrossRefGoogle Scholar
  22. 22.
    Y. Chen, S. P. Huang, Q. L. Liu, I. Broadwell, and A. M. Zhu, J. Appl. Polym. Sci. 120, 1859 (2011).CrossRefGoogle Scholar
  23. 23.
    Y. Chen, Q. L. Liu, A. M. Zhu, Q. G. Zhang, and J. Y. Wu, J. Membr. Sci. 348, 204 (2010).CrossRefGoogle Scholar
  24. 24.
    C. Nagel, E. Schmidtke, K. Günther-Schade, D. Hofmann, D. Fritsch, T. Strunskus, and F. Faupel, Macromolecules 33, 2242 (2000).CrossRefGoogle Scholar
  25. 25.
    D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers, and M. Böhning, Macromol. Theory Simul. 9, 293 (2000).CrossRefGoogle Scholar
  26. 26.
    R. Zhang and W. L. Mattice, J. Membr. Sci. 108, 15 (1995).CrossRefGoogle Scholar
  27. 27.
    D. Hofmann, L. Fritz, J. Ulbrich, and D. Paul, Comput. Theor. Polym. Sci. 10, 419 (2000).CrossRefGoogle Scholar
  28. 28.
    S. Neyertz, Soft Matter 4, 15 (2007).CrossRefGoogle Scholar
  29. 29.
    P. V. Komarov, Y.-T. Chiu, S.-M. Chen, and P. Reineker, Macromol. Theory Simul. 19, 64 (2010).Google Scholar
  30. 30.
    S. V. Lyulin, S. V. Larin, A. A. Gurtovenko, N. V. Lukasheva, V. E. Yudin, V. M. Svetlichnyi, and A. V. Lyulin, Polym. Sci., Ser. A 54, 631 (2012).CrossRefGoogle Scholar
  31. 31.
    V. M. Nazarychev, S. V. Larin, N. V. Lukasheva, A. D. Glova, and S. V. Lyulin, Polym. Sci. A 55, 570 (2013).CrossRefGoogle Scholar
  32. 32.
    S. V. Lyulin, A. A. Gurtovenko, S. V. Larin, V. M. Nazarychev, and A. V. Lyulin, Macromolecules 46, 6357 (2013).CrossRefGoogle Scholar
  33. 33.
    S. V. Larin, S. G. Falkovich, V. M. Nazarychev, A. A. Gurtovenko, A. Lyulin, and S. V. Lyulin, RSC Adv. 4, 830 (2014).CrossRefGoogle Scholar
  34. 34.
    S. V. Lyulin, S. V. Larin, A. A. Gurtovenko, V. M. Nazarychev, S. G. Falkovich, V. E. Yudin, V. M. Svetlichnyj, I. V. Gofman, and A. V. Lyulin, Soft Matter 10, 1224 (2014).CrossRefGoogle Scholar
  35. 35.
    D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem. 26, 1701 (2005).CrossRefGoogle Scholar
  36. 36.
    B. Hess, C. Kutzner, D. Van der Spoel, and E. Lindahl, J. Comput. Chem. 4, 435 (2008).Google Scholar
  37. 37.
    C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren, J. Comput. Chem. 25, 1656 (2004).CrossRefGoogle Scholar
  38. 38.
    J. Wang, P. Cieplak, and P. Kollman, J. Comput. Chem. 21, 1049 (2000).CrossRefGoogle Scholar
  39. 39.
    A. V. Lyulin and M. A. J. Michels, Macromolecules 35, 1463 (2002).CrossRefGoogle Scholar
  40. 40.
    A. V. Lyulin, N. K. Balabaev, and M. A. J. Michels, Macromolecules 36, 8574 (2003).CrossRefGoogle Scholar
  41. 41.
    S. Karanikas and I. G. Economou, Eur. Polym. J. 47, 735 (2011).CrossRefGoogle Scholar
  42. 42.
    I. A. Ronova and M. Bruma, Struct. Chem. 23, 47 (2012).CrossRefGoogle Scholar
  43. 43.
    I. Ronova, Struct. Chem. 21, 541 (2010).CrossRefGoogle Scholar
  44. 44.
    Y. Wang, L. Jiang, T. Matsuurac, T. S. Chung, and S. Goh, J. Membr. Sci. 318, 217 (2008).CrossRefGoogle Scholar
  45. 45.
    N. Peng, T. Chung, and M. Chang, J. Membr. Sci. 360, 48 (2010).CrossRefGoogle Scholar
  46. 46.
  47. 47.
  48. 48.
    R. Bruning and K. Samwer, Phys. Rev. B: Condens. Matter 46, 11318 (1992).CrossRefGoogle Scholar
  49. 49.
    K. Vollmayr, W. Kob, and K. J. Binder, Chem. Phys. 105, 4714 (1996).CrossRefGoogle Scholar
  50. 50.
    J. Baschnagel, J. Phys.: Condens. Matter 5, 1597 (1993).Google Scholar
  51. 51.
    P. Valavala, T. Clancy, T. Gates, and G. Odegard, Int. J. Solids Struct. 44, 1161 (2007).CrossRefGoogle Scholar
  52. 52.
    J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem. 25, 1157 (2004).CrossRefGoogle Scholar
  53. 53.
    N. Homeyer, A. H. C. Horn, H. Lanig, and H. Sticht, J. Mol. Model. 12, 281 (2006).CrossRefGoogle Scholar
  54. 54.
    A. Jakalian, B. Bush, D. Jack, and C. Bayly, J. Comput. Chem. 23, 1623 (2002).CrossRefGoogle Scholar
  55. 55.
    J. V. Facinelli, S. L. Gardner, L. Dong, C. L. Sensenich, R. M. Davis, and J. S. Riffle, Macromolecules 29, 7342 (1996).CrossRefGoogle Scholar
  56. 56.
    H. Berendsen, J. Postma, A. DiNola, and J. Haak, J. Chem. Phys. 81, 3684 (1984).CrossRefGoogle Scholar
  57. 57.
    V. L. Golo and K. V. Shaitan, Biofizika 47, 611 (2002).Google Scholar
  58. 58.
    T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).CrossRefGoogle Scholar
  59. 59.

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. G. Fal’kovich
    • 1
  • S. V. Larin
    • 1
  • V. M. Nazarychev
    • 1
  • I. V. Volgin
    • 2
  • A. A. Gurtovenko
    • 1
    • 2
  • A. V. Lyulin
    • 3
  • S. V. Lyulin
    • 1
    • 2
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Department of Applied PhysicsEindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations