Abstract
Rheological properties of 7.0–9.1% cellulose-chitosan suspensions, solutions, and gels in aqueous phosphoric acid were examined in various modes of shear flow in the range 0.15–100 s−1 at 268–323 K. During steady state flow, the appearance of a quasi-Newtonian region was detected at shear rates between 20 and 40 s−1 owing to orientational ordering of macromolecules in the stream. Under the conditions of transient shear flow at a constant shear rate, rheopexy was observed in both cellulose solutions and cellulose-chitosan solutions. The thixotropic behavior of cellulose-chitosan suspensions, spinning solutions, and gels was characterized during a sharp drop of shear rate from 0.15 to 10 s−1, that is, under conditions modeling the processes of transport and extrusion of spinning solutions.
This is a preview of subscription content, access via your institution.
References
A. N. Gonchar, D. D. Grinshpan, S. E. Makarevich, N. G. Tsygankova, and E. V. Sheimo, Vestn. Belneftekhim. Neftekhim. Kompleks, No. 1 (6), 6 (2011).
D. D. Grinshpan, N. G. Tsygankova, and F. N. Kaputskii, USSR Inventor’s Certificate No. 1348396 (1987).
H. Boerstoel, H. Maatman, J. B. Westerink, and B. M. Koenders, Polymer 42, 7371 (2001).
M. G. Northolt, H. Boerstoel, H. Maatman, R. Huisman, J. Veurink, and H. Elzerman, Polymer 42, 8249 (2001).
S. J. Picken, D. J. Sikkema, H. Boerstoel, T. J. Dingemans, and V. Zwaag, Liq. Cryst. 38, 1591 (2011).
S. Janjic, M. Kostic, V. Vucinic, S. Dimitrijevic, K. Popovic, M. Ristic, and P. Skundric, Carbohydr. Polym. 78, 240 (2009).
S. Z. Rogovina and G. A. Vikhoreva, Glycoconjug. J. 23, 611 (2006).
Z. Li, X. P. Zhuang, X. F. Liu, Y. L. Guan, and K. D. Yao, Polymer 43, 1541 (2002).
C. M. Shih, Y. T. Shieh, and Y. K. Twu, Carbohydr. Polym. 78, 169 (2009).
X. Duan, J. Xu, B. He, J. Li, and Y. Sun, BioResources 6, 4640 (2011).
H. Xie, S. Zhang, and S. Li, Green Chem. 8, 630 (2006).
O. Kuzmina, T. Heinze, and D. Wawro, ISRN Polym. Sci. 2012, Article ID 251950 (2012).
B. Ma, M. Zhang, C. He, and J. Sun, Carbohydr. Polym. 88, 347 (2012).
D. R. Biswal and R. P. Singh, Inc. J. Appl. Polym. 94, 1480 (2004).
M. Edali, M. N. Esmail, and G. H. Vatistas, J. Appl. Polym. Sci. 78, 1787 (2001).
D. D. Grinshpan, A. N. Gonchar, N. G. Tsygankova, S. M. Makarevich, T. A. Savitskaya, and E. V. Shejmo, J. Eng. Phys. Thermophys. 84, 594 (2011).
A. M. Ritcey and D. G. Gray, Biopolymers 27, 1363 (1988).
V. G. Kulichikhin and L. K. Golova, Khim. Drev., No. 3, 9 (1985).
A. Laszkiewicz, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 353, 127 (2000).
L. Schulz, W. Burchard, and R. Donges, Cellul. Derivat., 218 (1998).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © D.D. Grinshpan, A.N. Gonchar, T.A. Savitskaya, N.G. Tsygankova, S.E. Makarevich, 2014, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2014, Vol. 56, No. 2, pp. 142–151.
Rights and permissions
About this article
Cite this article
Grinshpan, D.D., Gonchar, A.N., Savitskaya, T.A. et al. Rheological properties of cellulose-chitosan-phosphoric acid systems in different phase states. Polym. Sci. Ser. A 56, 137–145 (2014). https://doi.org/10.1134/S0965545X14020059
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0965545X14020059
Keywords
- Cellulose
- Chitosan
- Shear Rate
- Polymer Science Series
- Cellulose Solution