Skip to main content
Log in

The influence of water on the friction forces of fibers in aramid fabrics

  • Mechanics of Polymers
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Fabrics based on high-impact organic fibers have an excellent potential to dissipate the energy of a ballistic impact. That is why they are used in protective helmets and flexible armor vests. The work of friction is the main mechanism of energy absorption in fabrics during a transverse impact. The friction forces of fibers were studied via the pullout of several neighboring fibers and via the transverse hardness indentation. The influence of water on indentation forces and pullout forces of Armos and Rusar fibers during their pullout from fabrics is studied. Water enhances friction force several-fold during the pullout of fibers. Consequently, the potential to dissipate the energy of an impact changes during a transverse action. The influence of moisture is irreversible in the Armos fabrics without a water-repellent coating, and drying does not lead to complete recovery of the friction forces of fibers. In the case of Rusar 56319 fabrics with a water-repellent coating, large drops of water roll off the fabric and only small drops influence the friction forces. A substantial variation in the indentation force is detected, thereby apparently providing evidence of the instability of the density of the fabric. An analysis of the mechanisms of energy dissipation is performed. The energy of the elastic deformation in an individual fiber is three times smaller than the kinetic energy of the fiber. Friction work can exceed the sum of kinetic energy and strain energy by an order of magnitude. The estimation of the value of the increase in the temperature of a fiber during an impact is performed. Heat is not emitted during an impact on an individual fiber in the case of the formation of a transverse wave during an inelastic impact. In the process of transmission of transverse and dilatational waves, the energy dissipation is proportionate to the impact velocity raised to the power of 8/3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Wagner, in Light Ballistic Materials, Ed. by A. Bhatnagar (Tekhnosfera, Moscow, 2011) [in Russian].

  2. Kh. A. Rakhmatulin, Prikl. Math. Mekh. 9, 449 (1945).

    Google Scholar 

  3. Kh. A. Rakhmatulin, Prikl. Math. Mekh. 11, 379 (1947).

    Google Scholar 

  4. A. K. Rogozinsky and S. L. Bazhenov, Polymer 33, 1391 (1992).

    Article  Google Scholar 

  5. J. D. Walker and S. Chocron, J. Appl. Mech. 78, 051021 (2011).

    Article  Google Scholar 

  6. J. C. Smith, F. L. McCrackin, and H. F. Schifer, Textile Res. J. 28, 288 (1958).

    Article  CAS  Google Scholar 

  7. J. C. Smith, J. M. Blandford, and H. F. Schifer, Text. Res. J. 30, 752 (1960).

    Article  Google Scholar 

  8. S. L. Bazhenov, I. A. Dukhovskii, P. I. Kovalev, and A. N. Rozhkov, Polym. Sci., Ser. A 43, 61 (2001).

    Google Scholar 

  9. D. J. Carr, J. Mater. Sci. Lett. 18, 585 (1999).

    Article  CAS  Google Scholar 

  10. P. M. Cunniff, Text. Res. J. 62, 495 (1992).

    CAS  Google Scholar 

  11. M. R. Ahmad, W. Y. W. Ahmad, J. Salleh, and A. Samsuri, Mater. Des. 29, 1353 (2008).

    Article  CAS  Google Scholar 

  12. P. V. Cavallaro, Soft Body Armor: An Overview of Materials, Manufacturing, Testing, and Ballistic Impact Dynamics (Naval Undersea Warfare Center Division, Newport, 2011), Technical Report, No. 12057.

    Google Scholar 

  13. D. J. Carr, C. Lankester, A. Peare, N. Fabri, and N. Gridley, Text. Res. J. 82, 883 (2012).

    Article  CAS  Google Scholar 

  14. A. M. Sadegh and P. V. Cavallaro, J. Eng. Fibers Fabr. 7, 10 (2012).

    Google Scholar 

  15. D. Roylance and S.-S. Wang, Fibre Sci. Technol. 14, 183 (1981).

    Article  Google Scholar 

  16. M. P. Rao, Y. Duan, M. Keefe, B. M. Powers, and T. A. Bogetti, Comput. Struct. 89, 556 (2009).

    Article  Google Scholar 

  17. R. C. Laible, Proc. Symp. Polypropyl. Fibres 9(17–18), 61 (1967).

    Google Scholar 

  18. J. W. S. Hearle, C. M. Leech, A. Adeyefa, and C. R. Cork, Ballistic Impact Resistance of Multi-Layer Textile Fabrics, Report No. AD-A128064 (Univ. of Manchester, Manchester, 1981).

    Google Scholar 

  19. B. J. Briscoe and F. Motamedi, Wear 158, 229 (1992).

    Article  Google Scholar 

  20. T. Duan, M. Keefe, T. A. Bogetti, and B. A. Cheeseman, Int. J. Impact Eng. 31, 996 (2005).

    Article  Google Scholar 

  21. V. B. C. Tan, C. T. Lim, and C. H. Cheong, Int. J. Impact Eng. 28, 207 (2003).

    Article  Google Scholar 

  22. Y. Termonia, Text. Res. J. 74, 723 (2004).

    Article  CAS  Google Scholar 

  23. X. S. Zeng, V. B. C. Tan, and V. P. W. Shim, Int. J. Numer. Methods Eng. 66, 1309 (2006).

    Article  Google Scholar 

  24. Z. Dong and C. T. Sun, Composites A 40, 1863 (2009).

    Article  Google Scholar 

  25. E. M. Parsons, M. J. King, and S. Socrate, J. Mech. Phys. Solids 61, 265 (2013).

    Article  Google Scholar 

  26. M. Zeinstra, R. H. W. Thije, and L. Warnet, Int. J. Mater. Form. 2, 193 (2009).

    Article  Google Scholar 

  27. D. Zhu, C. Soranakom, B. Mobasher, and S. D. Rajan, Composites A 42, 868 (2011).

    Article  Google Scholar 

  28. V. B. C. Tan, T. E. Tay, and W. K. Teo, Int. J. Solids Struct. 42, 1561 (2005).

    Article  Google Scholar 

  29. S. L. Bazhenov, J. Mater. Sci. 32, 4167 (1997).

    Article  CAS  Google Scholar 

  30. S. L. Bazhenov, Polym. Sci., Ser. B 48, 282 (2006).

    Article  Google Scholar 

  31. S. L. Bazhenov and G. P. Goncharuk, Polym. Sci, Ser. A 54, 803 (2012).

    Article  CAS  Google Scholar 

  32. V. A. Fedorov, V. G. Bova, I. V. Tikhonov, and I. V. Slugin, http://npptermoteks.ru/?page=25

  33. Yu. A. Mikhailin, Special Polymer Composite Materials (NOT, St. Petersburg, 2009) [in Russian].

    Google Scholar 

  34. Y. S. Lee, E. D. Wetzel, R. G. Egres, Jr., and N. J. Wagner, in Proceedings of 23 Arm. Sci. Conference, Orlando, 2002, p. AO–01.

  35. Y. S. Lee, E. D. Wetzel, and N. J. Wagner, J. Mater. Sci. 38, 2825 (2003).

    Article  CAS  Google Scholar 

  36. N. Wagner and E. D. Wetzel, US Patent No. 20060234577A1 (2006).

  37. K. M. Kirkwood, J. E. Kirkwood, Y. S. Lee, R. G. Egres, N. J. Wagner, and E. D. Wetzel, Text. Res. J. 74, 920 (2004).

    Article  CAS  Google Scholar 

  38. J. E. Kirkwood, K. M. Kirkwood, Y. S. Lee, R. G. Egres, N. J. Wagner, and E. D. Wetzel, Text. Res. J. 74, 939 (2005).

    Article  Google Scholar 

  39. A. Srivastava and B. S. Butola, Mater. Sci. Eng. A 529, 224 (2011).

    Article  CAS  Google Scholar 

  40. A. Srivastava and B. S. Butola, Crit. Rev. Solid State Mater. Sci. 37, 115 (2012).

    Article  CAS  Google Scholar 

  41. http://frontkit.spb.ru/newssgl.php?menu1=3&menu2=0&item=24.

  42. R. J. Rabb and E. P. Fahrenthold, J. Aircraft 48, 230 (2011).

    Article  Google Scholar 

  43. E. D. Wetzel and N. J. Wagner, J. Aircraft 49, 671 (2012).

    Article  Google Scholar 

  44. P. Grosberg and S. Kedia, Text. Res. J. 36, 71 (1966).

    Article  Google Scholar 

  45. I. V. Slugin, G. B. Sklyarova, A. I. Kashirin, L. V. Tkacheva, and S. V. Komissarov, Khim. Volokna, No. 1, 17 (2006).

    Google Scholar 

  46. M. Karahan, A. Kus, and R. Eren, Int. J. Impact Eng. 35, 499 (2008).

    Article  Google Scholar 

  47. http://www.ehow.com/how-7827767-care-bulletproof-vest

  48. A. R. Sabet, M. H. Beheshty, and H. Rahimi, Polym. Compos. 30, 1497 (2009).

    Article  CAS  Google Scholar 

  49. F. Matthews and R. Rollings, Composite Materials. Mechanics and Technology (Tekhnosfera, Moscow, 2004) [in Russian].

    Google Scholar 

  50. S. L. Bazhenov and V. V. Kozey, J. Mater. Sci. 26, 2677 (1991).

    Article  CAS  Google Scholar 

  51. A. Tabiei and G. Nilakantan, Appl. Mech. Rev. 61, 010801–1 (2008).

    Article  Google Scholar 

  52. D. W. Van Krevelen and K. Te Nijenhuis, Properties of Polymers. Their Correlations with Chemical Structure (Elsevier, Amsterdam, 2009).

    Google Scholar 

  53. A. B. Strong, Fundamentals of Composites Manufacturing (SME, Dearborn, 2008), p. 222.

    Google Scholar 

  54. L. C. Lin, A. Bhatnagar, and D. C. Lang, in Proceedings of 33 International SAMPE Symposium, Anaheim, 1988, p. 883.

  55. A. V. Bazilevskii, D. D. Meier, and A. N. Rozhkov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaz. 40, 45 (2005).

    Google Scholar 

  56. D. Roylance, A. Wilde, and G. Tocci, Text. Res. J. 43, 34 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Bazhenov.

Additional information

Original Russian Text © S.L. Bazhenov, G.P. Goncharuk, 2014, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2014, Vol. 56, No. 2, pp. 185–196.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhenov, S.L., Goncharuk, G.P. The influence of water on the friction forces of fibers in aramid fabrics. Polym. Sci. Ser. A 56, 184–195 (2014). https://doi.org/10.1134/S0965545X14020011

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X14020011

Keywords

Navigation