Skip to main content
Log in

Dynamics of a conducting polymer jet in an electric field

  • Theory and Simulation
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The dynamics of a non-Newtonian liquid jet emanating from the Taylor cone during electrospinning of a polymer solution has been studied. The viscoelastic properties of the solution are described in terms of the finitely extensible nonlinear elastic FENE-P model. The shape of the jet has been determined, and the current and tension in the jet have been calculated. Calculations have shown the existence of a critical tension at which the jet stops stretching such that it can exhibit time-dependent behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003).

    Article  CAS  Google Scholar 

  2. D. Li and Y. Xia, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 16, 1151 (2004).

    Article  CAS  Google Scholar 

  3. C. Wang, Y.-W. Cheng, C.-H. Hsu, H.-C. Chien, and S.-Y. J. Tsou, J. Polym. Res. 18, 111 (2011).

    Article  CAS  Google Scholar 

  4. F. J. Higuera, J. Fluid Mech. 484, 303 (2003).

    Article  Google Scholar 

  5. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Phys. Fluids 13, 2221 (2001).

    Article  CAS  Google Scholar 

  6. R. T. Collins, J. J. Jones, M. T. Harris, and O. A. Basaran, Nature Phys. 4, 149 (2008).

    Article  CAS  Google Scholar 

  7. J. J. Feng, Phys. Fluids 14, 3912 (2002).

    Article  CAS  Google Scholar 

  8. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer 42(25), 9955 (2001).

    Article  CAS  Google Scholar 

  9. A. V. Subbotin, Colloid J. 74, 510 (2012).

    Article  CAS  Google Scholar 

  10. D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu, Adv. Appl. Mech. 41, 43 (2007).

    Article  Google Scholar 

  11. J. De la Mora, Annu. Rev. Fluid Mech. 39, 217 (2007).

    Article  Google Scholar 

  12. M. E. Helgeson, K. N. Grammatikos, J. M. Deitzel, and N. J. Wagner, Polymer 49, 2924 (2008).

    Article  CAS  Google Scholar 

  13. I. Greenfeld, K. Fezzaa, M. H. Rafailovich, and E. Zussman, Macromolecules 45, 3616 (2012).

    Article  CAS  Google Scholar 

  14. S. N. Reznik and E. Zussman, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 81, 026313 (2010).

    Article  CAS  Google Scholar 

  15. J. J. Feng, J. Non-Newtonian Fluid Mech. 116, 55 (2003).

    Article  CAS  Google Scholar 

  16. C. P. Carroll and Y. L. Joo, Phys. Fluids 18, 053102 (2006).

    Article  Google Scholar 

  17. A. M. Ganan-Calvo, J. Fluid Mech. 507, 203 (2004).

    Article  Google Scholar 

  18. J. De la Mora and I. G. Loscertales, J. Fluid Mech. 260, 155 (1994).

    Article  Google Scholar 

  19. S. A. Theron, E. Zussman, and A. L. Yarin, Polymer 5, 2017 (2004).

    Article  Google Scholar 

  20. F. G. Higuera, J. Fluid Mech. 558, 143 (2006).

    Article  Google Scholar 

  21. P. K. Bhattacharjee, T. M. Schneider, M. P. Brenner, G. H. McKinley, and G. C. Rutledge, J. Appl. Phys. 107, 044306 (2010).

    Article  Google Scholar 

  22. J. H. Yu, S. V. Fridrikh, and G. C. Rutledge, Polymer 47, 4789 (2006).

    Article  CAS  Google Scholar 

  23. T. Miloh, B. Spivak, and A. L. Yarin, J. Appl. Phys. 106, 114910 (2009).

    Article  Google Scholar 

  24. A. A. Shutov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 41(6), 52 (2006).

    Google Scholar 

  25. C. P. Carroll and Y. L. Joo, J. Non-Newtonian Fluid Mech. 153, 130 (2008).

    Article  CAS  Google Scholar 

  26. S. O. Shiryaeva, Zh. Tekh. Fiz. 80(5), 24 (2010).

    Google Scholar 

  27. A. I. Grigor’ev and D. M. Pozharitskii, Zh. Tekh. Fiz. 78(10), 40 (2008).

    Google Scholar 

  28. V. N. Kirichenko, I. V. Petryanov-Sokolov, N. N. Suprun, and A. A. Shutov, Dokl. Akad. Nauk SSSR 289, 817 (1986).

    CAS  Google Scholar 

  29. J. M. Rallison and E. J. Hinch, J. Non-Newtonian Fluid Mech. 29, 37 (1988).

    Article  CAS  Google Scholar 

  30. L. Landau and E. Lifshitz, Theory of Elasticity (Nauka, Moscow, 1965; Pergamon, Oxford, 1970).

    Google Scholar 

  31. Y. Xin and D. H. Reneker, Polymer 53, 4254 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Subbotin.

Additional information

Original Russian Text © A.V. Subbotin, V.G. Kulichikhin, 2014, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2014, Vol. 56, No. 2, pp. 213–221.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subbotin, A.V., Kulichikhin, V.G. Dynamics of a conducting polymer jet in an electric field. Polym. Sci. Ser. A 56, 211–218 (2014). https://doi.org/10.1134/S0965545X1401009X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X1401009X

Keywords

Navigation