Polymer Science Series A

, Volume 55, Issue 8, pp 503–509 | Cite as

Unusual rheological effects observed in polyacrylonitrile solutions

Rheology

Abstract

Unusual rheological effects have been revealed during the deformation of polyacrylonitrile (PAN) solutions in DMSO. The effects are observed during the study of rheological properties in a wide range of PAN concentrations and are explained by the structuring occurring at low polymer concentrations. At concentrations of at most 0.1%, the solutions exhibit the behavior of soft gels, which are characterized by yield stresses and frequency-independent storage moduli. As concentration is increased, both effects gradually vanish and the solutions are almost transformed into Newtonian liquids. The results have been explained by the formation of a supramolecular spatial structure at low polymer concentrations. As concentration is increased, the role of structuring is suppressed by the formation of a network of intermacromolecular entanglements. The ability of dilute PAN solutions to exist in two states, i.e., with destroyed structuring and in the form of a physical polymer gel, leads to stress self-oscillations and thixotropic effects. The addition of a precipitant (water) to the PAN-DMSO solutions leads to the formation of a gel throughout the concentration range.

Keywords

Shear Rate Storage Modulus Polymer Science Series Apparent Viscosity Itaconate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. Strobl, The Physics of Polymers: Concepts for Understanding Their Structures and Behavior (Springer, New York, 2007).Google Scholar
  2. 2.
    A. Ya. Malkin and A. Isaev, Rheology: Concepts, Methods, Applications (TsOP Professiya, St. Petersburg, 2010) [in Russian].Google Scholar
  3. 3.
    L. Tan, H. Chen, D. Pan, and N. Pan, Eur. Polym. J. 45, 1617 (2009).CrossRefGoogle Scholar
  4. 4.
    L. Tan, S. Liu, and D. Pan, Colloid Surf. A: Physicochem. Eng. Asp. 340, 168 (2009).CrossRefGoogle Scholar
  5. 5.
    W. Du, H. Chen, H. Xu, D. Pan, and N. Pan, J. Polym. Sci., Part B: Polym. Phys. 47, 1437 (2009).CrossRefGoogle Scholar
  6. 6.
    L. Tan, S. Liu, D. Pan, and N. Pan, Soft Matter 5, 4297 (2009).CrossRefGoogle Scholar
  7. 7.
    P. J. Flory, Chem. Phys. 17, 303 (1949).Google Scholar
  8. 8.
    J. P. Cotton, D. Decker, H. Benoit, B. Farnoux, J. Higgins, G. Jannink, R. Ober, C. Picot, and J. Des Cloizeaux, Macromolecules 7, 863 (1974).CrossRefGoogle Scholar
  9. 9.
    K. Almdal, K. A. Koppi, F. S. Bates, and K. Mortensen, Macromolecules 25, 1743 (1992).CrossRefGoogle Scholar
  10. 10.
    H. Watanabe, T. Kanaya, and Y. Takahashi, Macromolecules 34, 662 (2001).CrossRefGoogle Scholar
  11. 11.
    R. C. Hayward and D. J. Pochan, Macromolecules 43, 3577 (2010).CrossRefGoogle Scholar
  12. 12.
    T. Nicolai, O. Colombani, and C. Chassenieux, Soft Matter 6, 3111 (2010).CrossRefGoogle Scholar
  13. 13.
    M. Polverari and T. G. M. Van de Ven, J. Phys. Chem. 100, 13687 (1996).CrossRefGoogle Scholar
  14. 14.
    B. Hammouda, D. L. Ho, and S. Kline, Macromolecules 37, 6932 (2004).CrossRefGoogle Scholar
  15. 15.
    S. Ilyin, T. Roumyantseva, V. Spiridonova, A. Semakov, E. Frenkin, A. Malkin, and V. Kulichikhin, Soft Matter 7, 9090 (2011).CrossRefGoogle Scholar
  16. 16.
    J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).Google Scholar
  17. 17.
    P. G. De Gennes, Scaling Concepts in Polymer Physics (Cornell Univ, Press, Ithaca, 1979; Mir, Moscow, 1982).Google Scholar
  18. 18.
    P. Möller, A. Fall, V. Chikkadi, D. Derks, and D. Bonn,, Philos. Trans. R. Soc. A 367, 5139 (2009).CrossRefGoogle Scholar
  19. 19.
    P. C. F. Möller, A. Fall, and D. Bonn,, Eur. Phys. Lett. 87, 38004 (2009).CrossRefGoogle Scholar
  20. 20.
    I. Masalova, M. Taylor, E. Kharatiyan, and A. Ya. Malkin, J. Rheol. (N. Y.) 49, 839 (2005).CrossRefGoogle Scholar
  21. 21.
    N. B. Uriev, Yu. S. Svistunov, N. A. Potapov, and V. A. Starikov, Dokl. Akad. Nauk 416, 70 (2007).Google Scholar
  22. 22.
    A. Malkin, S. Ilyin, A. Semakov, and V. Kulichikhin, Soft Matter 8, 2607 (2012).CrossRefGoogle Scholar
  23. 23.
    S. O. Il’in, G. S. Pupchenkov, A. I. Krasheninnikov, V. G. Kulichikhin, and A. Ya. Malkin, Kolloidn. Zh. 75, 295 (2013).Google Scholar
  24. 24.
    V. G. Kulichikhin, A. Ya. Malkin, A. Arinstein, A. V. Semakov, and I. Yu. Skvortsov, Europhys. Lett. (in press).Google Scholar
  25. 25.
    R. H. Ewoldt, H. C. Clasen, A. E. Hosoi, and G. H. McKinley, Soft Matter 3, 634 (2007).CrossRefGoogle Scholar
  26. 26.
    A. Malkin, S. Ilyin, and V. Kulichikhin, Appl. Rheol. (in press).Google Scholar
  27. 27.
    S. O. Il’in, A. Ya. Malkin, and V. G. Kulichikhin, Polymer Science (in press).Google Scholar
  28. 28.
    S. P. Papkov, The Gel State of Polymers (Khimiya, Moscow, 1974) [in Russian].Google Scholar
  29. 29.
    A. Malkin, S. Ilyin, T. Roumyantseva, and V. Kulichikhin, Macromolecules 46, 257 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. O. Ilyin
    • 1
  • V. G. Kulichikhin
    • 1
  • A. Ya. Malkin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations