Polymer Science Series A

, Volume 54, Issue 8, pp 631–643 | Cite as

Effect of the SO2 group in the diamine fragment of polyimides on their structural, thermophysical, and mechanical properties

  • S. V. LyulinEmail author
  • S. V. Larin
  • A. A. Gurtovenko
  • N. V. Lukasheva
  • V. E. Yudin
  • V. M. Svetlichnyi
  • A. V. Lyulin
Structure and Properties


Experimental and theoretical investigations, including an all-atom computer simulation, are performed for block samples of thermoplastic polyimides, amorphous R-BAPS (based on R dianhydride 1,3-bis(3′,4-dicarboxyphenoxy)benzene and diamine BAPS 4,4′-bis(4″-aminophenoxy)biphenyl sulfone), and crystallizable R-BAPB (based on R dianhydride and diamine BAPB 4,4’-bis(4″-aminophenoxy)biphenyl), which differ in either the presence or absence of the sulfone group in the repeating unit of the polyimide macromolecule. The features of thermophysical, structural, and mechanical properties of R-BAPS and R-BAPB are related to the formation of associates from sulfur and oxygen atoms of the sulfone group that are stabilized by electrostatic interactions.


Glass Transition Temperature Polyimide Polymer Science Series Sulfone Group Persistence Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Polyimides: A Class of Thermally Stable Polymers, Ed. by M. I. Bessonov (Nauka, Leningrad, 1983) [in Russian].Google Scholar
  2. 2.
    I. W. Serfaty, Eng. Thermoplast. Prop. Appl., No. 4, 283 (1985).Google Scholar
  3. 3.
    W. Sederel, Kunststoffe 76, 905 (1986).Google Scholar
  4. 4.
    A. L. Rusanov and G. S. Matvelashvili, Plast. Massy, No. 11, 3 (1991).Google Scholar
  5. 5.
    D. Heath and J. Wirth, US Patent No. 3,847,867 (1974).Google Scholar
  6. 6.
    D. E. Florian and I. W. Serfaty, Mod. Plast. Int. 12(6), 38 (1982).Google Scholar
  7. 7.
    Y. Wang, L. Y. Jiang, T. Matsuurac, T. S. Chung, and S. H. Goh, J. Membr. Sci. 318, 217 (2008).CrossRefGoogle Scholar
  8. 8.
    N. Peng, T. S. Chung, M. L. Chng, and W. Aw, J. Membr. Sci. 360, 48 (2010).CrossRefGoogle Scholar
  9. 9.
    J. Xia, S. Liu, P. K. Pallathadka, M. L. Chng, and T. S. Chung, Ind. Eng. Chem. Res. 49, 12014 (2010).CrossRefGoogle Scholar
  10. 10.
    C. J. Lee, J. Macromol. Sci., Rev. Macromol. Chem. 29, 431 (1989).CrossRefGoogle Scholar
  11. 11.
    J. Bicerano, Prediction of Polymer Properties (Marcel Dekker, New York, 2002).CrossRefGoogle Scholar
  12. 12.
    V. M. Svetlichnyi and V. V. Kudryavtsev, Polymer Science, Ser. B 45, 140 (2003) [Vysokomol. Soedin., Ser. B 45, 56 (2003)].Google Scholar
  13. 13.
    V. E. Yudin, V. M. Svetlichnyi, G. N. Gubanova, A. I. Grigor’ev, T. E. Sukhanova, I. V. Gofman, A. L. Didenko, E. N. Popova, R. N. Fedorova, and V. V. Kudryavtsev, Polymer Science, Ser. A 44, 148 (2002) [Vysokomol. Soedin., Ser. A 44, 257 (2002)].Google Scholar
  14. 14.
    V. E. Yudin, V. M. Svetlichnyi, G. N. Gubanova, A. L. Didenko, T. E. Sukhanova, V. V. Kudryavtsev, S. Ratner, and G. Marom, J. Appl. Polym. Sci. 83, 2873 (2002).CrossRefGoogle Scholar
  15. 15.
    V. E. Yudin, V. M. Svetlichnyi, A. N. Shumakov, D. G. Letenko, A. Y. Feldman, G. Marom, Macromol. Rapid Commun. 26, 885 (2005).CrossRefGoogle Scholar
  16. 16.
    V. E. Yudin, A. Y. Feldman, V. M. Svetlichnyi, A. N. Shumakov, and G. Marom, Compos. Sci. Technol. 67, 789 (2007).CrossRefGoogle Scholar
  17. 17.
    V. E. Yudin, J. U. Otaigbe, L. T. Drzal, and V. M. Svetlichnyi, Adv. Compos. Lett. 15(4), 137 (2006).Google Scholar
  18. 18.
    A. N. Shumakov, V. E. Yudin, V. M. Svetlichnyi, A. N. Didenko, N. N. Bogorad, E. N. Popova, D. G. Letenko, Yu. A. Fadin, and A. N. Solov’ev, Vopr. Materialoved. 46, 158 (2006).Google Scholar
  19. 19.
    V. E. Yudin, G. M. Divoux, J. U. Otaigbe, and V. M. Svetlichnyi, Polymer 46, 10866 (2005).CrossRefGoogle Scholar
  20. 20.
    V. E. Yudin, V. M. Svetlichnyi, A. N. Shumakov, R. Schechter, H. Harel, and G. Marom, Composites A 39, 85 (2008).CrossRefGoogle Scholar
  21. 21.
    T. Kurose, V. E. Yudin, J. U. Otaigbe, and V. M. Svetlichnyi, Polymer 48, 7130 (2007).CrossRefGoogle Scholar
  22. 22.
    V. E. Yudin and V. M. Svetlichnyi, RZhKh 53(4), 75 (2009).Google Scholar
  23. 23.
    T. M. Birshtein, Vysokomol. Soedin., Ser. A 19, 54 (1977).Google Scholar
  24. 24.
    P. J. Flory, Statistical Mechanics of Chain Molecules (Wiley, New York, 1969; Mir, Moscow, 1971).Google Scholar
  25. 25.
    B. Hess, C. Kutzner, D. Van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).CrossRefGoogle Scholar
  26. 26.
    D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhoff, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem. 26, 1701 (2005).CrossRefGoogle Scholar
  27. 27.
    C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren, J. Comput. Chem. 25, 1656 (2004).CrossRefGoogle Scholar
  28. 28.
    B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).CrossRefGoogle Scholar
  29. 29.
    T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).CrossRefGoogle Scholar
  30. 30.
    U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).CrossRefGoogle Scholar
  31. 31.
    J. P. P. Stewart, J. Comput. Chem. 10, 209 (1989).CrossRefGoogle Scholar
  32. 32.
    W. Thiel, in Modern Methods and Algorithms of Quantum Chemistry, Ed. by J. Grotendorst and J. von Neumann (Inst. for Computing, NIC Ser., Jülich, 2000), Vol. 1.Google Scholar
  33. 33.
    V. A. Basiuk, R. Navarro-González, Y. Benilan, and F. Raulin, Spectrochim. Acta, Part A 57, 505 (2001).CrossRefGoogle Scholar
  34. 34.
    H. J. C. Berendsen, in Computer Simulations in Materials Science, Ed. by M. Meyer and V. Pontikis (Kluwer, Dordrecht, 1991).Google Scholar
  35. 35.
    P. V. Komarov, Y.-T. Chiu, S.-M. Chen, and P. Reineker, Macromol. Theory Simul. 19, 64 (2010).Google Scholar
  36. 36.
    J. L. Chung, J. Macromol. Sci., Rev. Macromol. Chem. Phys. 29, 431 (1989).CrossRefGoogle Scholar
  37. 37.
    R. Brüning and K. Samwer, Phys. Rev. B: Condens. Matter 46, 11318 (1992).CrossRefGoogle Scholar
  38. 38.
    K. Vollmayr, W. Kob, and K. Binder, J. Chem. Phys. 105, 4714 (1996).CrossRefGoogle Scholar
  39. 39.
    A. V. Lyulin, N. K. Balabaev, and M. A. J. Michels, Macromolecules 36, 8574 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. V. Lyulin
    • 1
    • 2
    Email author
  • S. V. Larin
    • 1
  • A. A. Gurtovenko
    • 1
    • 2
  • N. V. Lukasheva
    • 1
  • V. E. Yudin
    • 1
  • V. M. Svetlichnyi
    • 1
  • A. V. Lyulin
    • 3
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Faculty of PhysicsSt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia
  3. 3.Department of Applied PhysicsEindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations