Skip to main content
Log in

Computer-aided simulation of the influence of collective effects on polymer-melt dynamics in a straight cylindrical tube: Observation of the onset stage of the corset effect

  • Modeling
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The results of the computer-aided simulation of the dynamics of a polymer melt consisting of Fraenkel chains in straight cylindrical tubes and in bulk are discussed. Two different models are studied. In the first model, the dynamics of the polymer melt is simulated via the molecular dynamics simulation. The interaction of unbound polymer segments is described by the Lennard-Jones potential, which excludes any chain crossing of macromolecules and generates collective acoustic waves. In the second model, which serves as a reference, the system is studied via the Brownian dynamics method, in which intermolecular interactions are allowed for phenomenologically via friction and stochastic Langevin forces. In this case, cooperative effects are absent and the effect of spatial confinements makes itself evident only in a narrow near-wall layer. For the two models under consideration, there is a significant difference in the decay of dynamic correlation functions C αβ(t) = 〈b α(t)b β(t)b α(0)b β(0)〉〈b 2α b 2β −1, where averaging is performed over all macromolecular segments and b α (t) is the component of the end-to-end-segment vector (α ≠ β = x,y, and the cylindrical axis of the tube is directed along the z axis). For the first model allowing for collective effects, the dynamics of decay of C αβ (t)functions is much slower than that for the melt in bulk, and for the second model, in which the presence of the tube leads only to spatial confinements for the polymer segments in the direct vicinity of walls. This difference indicates the fundamental significance of the collective effects in the dynamics of polymer melts confined in porous media. This phenomenon is the first computer-simulated evidence of the onset stage of the so-called corset effect, which was first observed experimentally with the use of NMR relaxometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ok, M. Steinhart, A. Serbescu, C. Franz, F. V. Chavez, and K. Saalwächter, Macromolecules 43, 4429 (2010).

    Article  CAS  Google Scholar 

  2. M. Hofmann, A. Herrmann, S. Ok, C. Franz, D. Kruk, K. Saalwächter, M. Steinhart, and E. A. Roessler, Macromolecules 44, 4017 (2011).

    Article  CAS  Google Scholar 

  3. A. Sanz, A. Nogales, and T. A. Ezquerra, Soft Matter 7, 6477 (2011).

    Article  CAS  Google Scholar 

  4. D. Kruk, A. Herrmann, and E. A. Rössler, Progress in Nuclear Magnetic Resonance Spectroscopy, Accepted Manuscript (2011).

  5. U. Beginn, E. Fischer, T. Pieper, F. Mellinger, R. Kimmich, and M. Möller, J. Polym. Sci., Part A: Polym. Chem. 38, 2041 (2000).

    Article  CAS  Google Scholar 

  6. E. Fischer, U. Beginn, N. Fatkullin, and R. Kimmich, Macromolecules 37, 3277 (2004).

    Article  CAS  Google Scholar 

  7. E. Fischer, R. Kimmich, U. Beginn, M. Möller, and N. Fatkullin, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 59, 4079 (1999).

    Article  CAS  Google Scholar 

  8. E. Fischer, U. Beginn, N. Fatkullin, and R. Kimmich, Magn. Reson. Imaging 23, 379 (2005).

    Article  CAS  Google Scholar 

  9. R. Kimmich and N. Fatkullin, Macromolecules 43, 9821 (2010).

    Article  CAS  Google Scholar 

  10. R. Kimmich and N. Fatkullin, J. Chem. Phys. 134, 057101 (2011).

    Article  Google Scholar 

  11. G. D. Smith, D. Y. Yoon, R. L. Jaffe, R. H. Colby, R. Krishnamoorti, and L. J. Fetters, Macromolecules 29, 3462 (1996).

    Article  CAS  Google Scholar 

  12. M. Kroutyeva, J. Martin, A. Arbe, J. Colmenero, C. Mijangos, G. J. Schneider, T. Unruh, Y. Su, and D. Richter, J. Chem. Phys. 131, 174901–1 (2009).

    Article  Google Scholar 

  13. J. Martin, M. Krutyeva, M. Monkenbusch, A. Arbe, J. Allgaier, A. Radulescu, P. Falus, J. Maiz, C. Mijangos, J. Colmenero, and D. Richter, Phys. Rev. Lett. 104, 197801–1 (2010).

    Article  CAS  Google Scholar 

  14. K. Lagrené, J.-M. Zanotti, M. Daoud, B. Farago, and P. Judeinstein, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 81, 060801–1 (2010).

    Article  Google Scholar 

  15. R. Kimmich, R.-O. Seitter, U. Beginn, M. Möller, and N. Fatkullin, Chem. Phys. Lett. 307, 147 (1999).

    Article  CAS  Google Scholar 

  16. C. Mattea, N. Fatkullin, E. Fischer, U. Beginn, E. Anoardo, M. Kroutieva, and R. Kimmich, Appl. Magn. Reson. 27, 371 (2004).

    Article  CAS  Google Scholar 

  17. R. Kausik, C. Mattea, R. Kimmich, and N. Fatkullin, Eur. Phys. J., Spec. Top. 141, 235 (2007).

    Article  Google Scholar 

  18. N. Fatkullin, R. Kausik, and R. Kimmich, J. Chem. Phys. 126, 094904–1 (2007).

    Article  Google Scholar 

  19. R. Kausik, N. Fatkullin, N. Hüsing, and R. Kimmich, Magn. Reson. Imaging 25, 489 (2007).

    Article  CAS  Google Scholar 

  20. R. Kausik, C. Mattea, N. Fatkullin, and R. Kimmich, J. Chem. Phys. 124, 114903–1 (2006).

    Article  Google Scholar 

  21. J. Krzaczkowska, M. Strankowski, S. Jurga, K. Jurga, and A. Pietraszko, J. Non-Cryst. Solids 356, 945 (2010).

    Article  CAS  Google Scholar 

  22. A. Schonhals, H. Goering, and Ch. Schick, J. Non-Cryst. Solids 305, 140 (2002).

    Article  CAS  Google Scholar 

  23. C.-Y. Liu, B. Zhang, J. He, R. Keunings, and C. Bailly, Macromolecules 42, 7982 (2009).

    Article  CAS  Google Scholar 

  24. N. Fatkullin, R. Kimmich, E. Fischer, C. Mattea, U. Beginn, and M. Kroutieva, New J. Phys. 6, 46–1 (2004).

    Article  Google Scholar 

  25. S. Stapf and R. Kimmich, Macromolecules 29, 1638 (1996).

    Article  CAS  Google Scholar 

  26. M. Kehr, N. Fatkullin, and R. Kimmich, J. Chem. Phys. 126, 094903–1 (2007).

    Article  Google Scholar 

  27. M. Kehr, N. Fatkullin, and R. Kimmich, J. Chem. Phys. 127, 084911–1 (2007).

    Article  Google Scholar 

  28. A. Milchev, J. Phys.: Condens. Matter 23, 103101 (2011).

    Article  Google Scholar 

  29. G. J. Schneider, K. Nusser, L. Willner, P. Falus, and D. Richter, Macromolecules 44, 5857 (2011).

    Article  CAS  Google Scholar 

  30. A. Gubaidullin, T. Shakirov, N. Fatkullin, and R. Kimmich, Solid State Nucl. Magn. Reson. 35, 147 (2009).

    Article  CAS  Google Scholar 

  31. N. Fatkullin, A. Gubaidullin, and S. Stapf, J. Chem. Phys. 132, 094903 (2010).

    Article  CAS  Google Scholar 

  32. N. F. Fatkullin, T. M. Shakirov, and N. A. Balakirev, Polymer Science, Ser. A 52, 72 (2010) [Vysokomol. Soedin., Ser. A 52, 67 (2010)].

    Article  Google Scholar 

  33. Yu. Ya. Gotlib, A. A. Darinskii, and Yu. E. Svetlov, Physical Kinetics of Macromolecules (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

  34. K. Binder and W. Paul, J. Polym. Sci., Part B: Polym. Phys. 35, 1 (1997).

    Article  CAS  Google Scholar 

  35. E. M. Pestryaev, J. Phys., Conf. Ser. 324, 012031 (2011).

    Article  Google Scholar 

  36. http://lammps.sandia.gov/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Shakirov.

Additional information

Original Russian Text © T.M. Shakirov, N.F. Fatkullin, P.G. Khalatur, S. Stapf, R. Kimmich, 2012, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2012, Vol. 54, No. 6, pp. 907–914.

This work was supported by the Russian Foundation for Basic Research (project no. 10-03-00739-a) and the DAAD program Mikhail Lomonosov II

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakirov, T.M., Fatkullin, N.F., Khalatur, P.G. et al. Computer-aided simulation of the influence of collective effects on polymer-melt dynamics in a straight cylindrical tube: Observation of the onset stage of the corset effect. Polym. Sci. Ser. A 54, 505–511 (2012). https://doi.org/10.1134/S0965545X12050100

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X12050100

Keywords

Navigation