Skip to main content
Log in

Adsorption properties of comb-like polymer on nanotube surface

  • Modeling
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The adsorption and wrapping process of a single flexible comb-like polymer to a single wall nanotube was studied by Molecular Dynamics simulation of a coarse-grained model. We varied the grafting density and length of the side chains, the radius of the nanotube and strength of interaction between the monomers of nanotube and side chains of polymer brush. We investigated the structural and dynamical characters of interactions of the nanotube-polymer composite, such as the effect of Lennard-Jones energy parameter ɛLJ and the nanotube radius on the adsorption behavior and how the wrapping conformation is affected by the structure of the polymer brush. The simulation results indicate that single comb-like polymer with flexible backbone tends to adsorb and wrap around the nanotube, when the interaction energy exceeds a critical value. The monomer adsorption ratio, interaction energy profiles and moment of inertia are obtained. The helical wrapping only occurs when the interaction energy is large enough. Also, the influence of the polymer structure on the conformational behavior is analyzed. This work underscores design elements important for engineering well-defined nanotube-polymer nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zhang and A. H. E. Muller, J. Polym. Sci., Part A: Polym. Chem. 43, 3461 (2005).

    Article  CAS  Google Scholar 

  2. A. V. Subbotin and A. N. Semenov, Polymer Science, Ser. A 49, 1328 (2007).

    Article  Google Scholar 

  3. S. S. Sheiko, B. S. Sumerlin, and K. Matyjaszewski, Prog. Polym. Sci. 33, 759 (2008).

    Article  CAS  Google Scholar 

  4. A. A. Glagoleva, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 53, 344 (2011).

    Article  CAS  Google Scholar 

  5. I. I. Potemkin and V. V. Palyulin, Polymer Science, Ser. A 51, 123 (2009).

    Article  Google Scholar 

  6. P. M. Claesson, R. Makuska, I. Varga, R. Meszaros, S. Titmuss, and P. Linse, Adv. Colloid Interface Sci. 155, 50 (2010).

    Article  CAS  Google Scholar 

  7. Y. Zhou, B. Liedberg, N. Gorochovceva, R. Makuska, A. Dedinaite, and P. M. Claesson, J. Colloid Interface Sci. 305, 62 (2007).

    Article  CAS  Google Scholar 

  8. C. Perrino, S. Lee, S. W. Choi, A. Maruyama, and N. D. Spencer, Langmuir 24, 8850 (2008).

    Article  CAS  Google Scholar 

  9. A. Naderi, J. Iruthayaraj, A. Vareikis, R. Makuska, and P. M. Claesson, Langmuir 23, 12222 (2007).

    Article  CAS  Google Scholar 

  10. A. Dedinaite, I. Joseph, N. Gorochovceva, R. Makuska, and P. M. Claesson, Prog. Colloid Polym. Sci. 132, 124 (2006).

    Article  CAS  Google Scholar 

  11. A. Naderi, T. Pettersson, R. Makuska, and P. M. Claes- son, Langmuir 24, 3336 (2008).

    Article  Google Scholar 

  12. T. Pettersson and A. Dedinaite, J. Colloid Interface Sci. 324, 246 (2008).

    Article  CAS  Google Scholar 

  13. Y. K. Kang, O. S. Lee, P. Deria, S. H. Kim, T. H. Park, D. A. Bonnell, J. G. Saven, and M. J. Therien, Nano Lett. 9, 1444 (2009).

    Google Scholar 

  14. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev. 106, 1105 (2006).

    Article  CAS  Google Scholar 

  15. F. M. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fis- cher, and K. I. Winey, Macromolecules 37, 9048 (2004).

    Article  CAS  Google Scholar 

  16. E. Kymakis and G. A. Amaratunga, Appl. Phys. Lett. 80, 112 (2002).

    Article  CAS  Google Scholar 

  17. C. Y. Wei, D. Srivastava, and K. Cho, Nano Lett. 2, 647 (2002).

    Article  CAS  Google Scholar 

  18. A. B. Dalton, S. Collins, E. Munoz, et al., Nature (London) 423, 703 (2003).

    Article  CAS  Google Scholar 

  19. J. Iruthayaraj, E. Poptoshev, A. Vareikis, R. Makuska, A. Vanderwal, and P. M. Claesson, Macromolecules 38, 6152 (2005).

    Article  CAS  Google Scholar 

  20. J. Iruthayaraj, G. Olanya, and P. M. Claesson, J. Phys. Chem. C 112, 15028 (2008).

    Article  CAS  Google Scholar 

  21. D. A. Panchuk, S. L. Bazhenov, A. V. Bolshakova, L. M. Yarysheva, A. L. Volynskii, and N. F. Bakeev, Polymer Science, Ser. A 53, 211 (2011).

    Article  CAS  Google Scholar 

  22. A. Naderi, J. Iruthayaraj, T. Pettersson, R. Makuska, and P. M. Claesson, Langmuir 24, 6676 (2008).

    Article  CAS  Google Scholar 

  23. S. Rathgeber, T. Pakula, A. Wilk, K. Matyjaszewski, and K. Beers, J. Chem. Phys. 122, 124904 (2005).

    Article  Google Scholar 

  24. H. I. Lee, K. Matyjaszewski, S. Y. Su, and S. S. Sheiko, Macromolecules 41, 6073 (2008).

    Article  CAS  Google Scholar 

  25. P. E. Theodorakis, W. Paul, and K. Binder, J. Chem. Phys. 133, 104901 (2010).

    Article  CAS  Google Scholar 

  26. H. P. Hsu, W. Paul, and K. Binder, Macromolecules 43, 3094 (2010).

    Article  CAS  Google Scholar 

  27. A. T. Nasrabadi and M. Foroutan, J. Phys. Chem. B 114 15429 (2010).

    Article  CAS  Google Scholar 

  28. M. Knaapilo, R. Stepanyan, M. Torkkeli, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 77, 051809 (2008).

    Google Scholar 

  29. J. Clein, Science (Washington, D. C.) 323, 47 (2009).

    Article  Google Scholar 

  30. H. P. Hsu, W. Paul, S. Rathgeber, and K. Binder, Macromolecules 43, 1592 (2010).

    Article  CAS  Google Scholar 

  31. P. E. Theodorakis, W. Paul, and K. Binder, Macromolecules 43, 5137 (2010).

    Article  CAS  Google Scholar 

  32. S. S. Tallury and M. A. Pasquinelli, J. Phys. Chem. B 114, 4122 (2010).

    Article  CAS  Google Scholar 

  33. S. S. Tallury and M. A. Pasquinelli, J. Phys. Chem. B 114, 9349 (2010).

    Article  CAS  Google Scholar 

  34. W. Liu, C. L. Yang, Y. T. Zhu, and M. S. Wang, J. Phys. Chem. C 112, 1803 (2008).

    Article  CAS  Google Scholar 

  35. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).

    Article  CAS  Google Scholar 

  36. G. S. Grest and K. Kremer, Phys. Rev. A 33, 3628 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Q. Cao.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Zuo, C.C., Cao, Q.Q. et al. Adsorption properties of comb-like polymer on nanotube surface. Polym. Sci. Ser. A 54, 39–47 (2012). https://doi.org/10.1134/S0965545X12010105

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X12010105

Keywords

Navigation