Skip to main content
Log in

Binding of mucin to water-soluble and surface-grafted boronate-containing polymers

  • Structure and Properties
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The binding of mucin to water-soluble copolymers of N,N-dimethylacrylamide and N-acryloyl-m-aminophenylboronic acid grafted on the surface of glass is studied. Atomic force microscopy studies show that many graft copolymer islands 20–200 nm in diameter and 50 nm in height occur on the modified surface of flat glass. Owing to the presence of phenyl boronate groups, the copolymer behaves as a weak polyelectrolyte (pK a = 9.0) and, in the grafted state in an aqueous solution, experiences reversible transitions between states with higher and lower degrees of ionization. As evidenced by spectral correlation interferometry, this phenomenon brings about a change in the thickness of the grafted layer by approximately 0.5 nm. The ability of phenyl boronate groups to form cyclic esters with diol and polyol groups results in complexation of the soluble copolymer with mucin oligosaccharides and entails the appearance of slowly growing submicron particles formed by similarly charged polymers. The specificity of complexation is confirmed by dissolution of particles in the presence of fructose: a saccharide with a strong affinity for phenyl boronate groups. The binding of mucin to glass, which is chemically modified with the above copolymer, leads to formation of an adsorption layer with a thickness of 1.2–1.8 nm. Thus, boronate-containing copolymers are suitable for preparing carriers with controllable adsorption properties with respect to polyols, including mucinlike proteins of cellular glycocalyxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Tadmor, J. Janik, and J. Klein, Phys. Rev. Lett. 91(11), 1 (2003).

    Article  Google Scholar 

  2. H. G. Snaith, G. Whiting, B. Sun, et al., Nano Lett. 5, 1653 (2005).

    Article  CAS  Google Scholar 

  3. A. E. Ivanov, V. V. Saburov, and V. P. Zubov, Adv. Polym. Sci. 104, 135 (1992).

    Article  CAS  Google Scholar 

  4. V. P. Zubov, D. V. Kapustin, A. N. Generalova, et al., Polymer Science, Ser. A 49, 1247 (2007) [Vysokomol. Soedin., Ser. A 49, 2042 (2007)].

    Article  Google Scholar 

  5. T. Kawai, K. Saito, and W. Lee, J. Chromatogr. B 790, 131 (2004).

    Article  Google Scholar 

  6. L. B. Piotrovskii, R. V. Romanov, R. A. Kotel’nikova, et al., Fundament. Probl. Farmakol. 2, 84 (2003).

    Google Scholar 

  7. H. Ma, J. Hyun, P. Stiller, and A. Chilkoti, Adv. Mater.(Weinheim, Fed. Repub. Ger.) 16, 338 (2004).

    Article  CAS  Google Scholar 

  8. A. Muzutani, A. Kikuchi, M. Yamato, et al., Biomaterials 29, 2073 (2008).

    Article  Google Scholar 

  9. R. R. Bhat, B. N. Chaney, J. Rowley, et al., Adv. Mater. (Weinheim, Fed. Repub. Ger.) 17, 2802 (2005).

    Article  CAS  Google Scholar 

  10. V. I. Sevast’yanov and V. N. Vasilets, Ross. Khim. Zh. 52(3), 72 (2008).

    Google Scholar 

  11. C. G. Oster, M. Wittmar, F. Unger, et al., Pharm. Res. 21, 927 (2004).

    Article  CAS  Google Scholar 

  12. D. L. Huber, R. P. Manginell, M. A. Samara, et al., Science (Washington, D. C.) 301, 352 (2003).

    Article  CAS  Google Scholar 

  13. H. Kitano, Y. Anraku, and H. Shinohara, Biomacromolecules 7, 1065 (2006).

    Article  CAS  Google Scholar 

  14. V. Koutsos, E. W. Van der Vegte, E. Pelletier, et al., Macromolecules 30, 4719 (1997).

    Article  CAS  Google Scholar 

  15. T. M. Birshtein, B. M. Amoskov, A. A. Merkur’eva, et al., Polymer Science, Ser. A 47, 476 (2005) [Vysokomol. Soedin., Ser. A 47, 795 (2005)].

    Google Scholar 

  16. M. V. Kuzimenkova, A. E. Ivanov, and I. Yu. Galaev, Macromol. Biosci. 6, 170 (2006).

    Article  CAS  Google Scholar 

  17. A. E. Ivanov, H. A. Panahi, M. V. Kuzimenkova, L. Nilsson, B. Bergenstahl, H. S. Waqif, M. Jahanshahi, I. Yu. Galaev, and B. Mattiasson, Chem.-Eur. J. 12, 7204 (2006).

    Article  CAS  Google Scholar 

  18. J. C. Norrild and H. Eggert, J. Chem. Soc., Perkin Trans., No. 12, 2583 (1996).

  19. A. E. Ivanov, J. Eccles, H. A. Panahi, et al., J. Biomed. Mater. Res. A 88, 213 (2009).

    Google Scholar 

  20. X. Zhong, H.-J. Bai, J.-J. Xu, et al., Adv. Funct. Mater. 20, 992 (2010).

    Article  CAS  Google Scholar 

  21. G. J. Strous and J. Dekker, Crit. Rev. Biochem. Mol. Biol. 27, 57 (1992).

    Article  CAS  Google Scholar 

  22. A. D. Turashev, E. G. Tishchenko, and A. V. Maksimenko, Kardiol. Vestn. 2, 84 (2007).

    Google Scholar 

  23. P. I. Nikitin, B. G. Gorshkov, M. V. Valeiko, and S. I. Rogov, Kvantovaya Elektron. (Moscow) 30, 1099 (2000).

    Article  CAS  Google Scholar 

  24. P. I. Nikitin, M. V. Valeiko, and B. G. Gorshkov, Sens. Actuators B 90, 46 (2003).

    Article  Google Scholar 

  25. P. I. Nikitin, M. V. Valeiko, B. G. Gorshkov, and T. I. Ksenevich, Sens. Actuators B 111–112, 500 (2005).

    Article  Google Scholar 

  26. M. Hartmann, P. Nikitin, and M. Keusgen, Biosens. Bioelectron. 22, 28 (2006).

    Article  CAS  Google Scholar 

  27. P. I. Nikitin, P. M. Vetoshko, and T. I. Ksenevich, Sens. Lett. 5, 296 (2007).

    Article  CAS  Google Scholar 

  28. P. Nikitin, P. Vetoshko, and T. Ksenevich, J. Magn. Magn. Mater. 311, 445 (2007).

    Article  CAS  Google Scholar 

  29. T. L. Krasnikova, P. I. Nikitin, T. I. Ksenevich, et al., Dokl. Akad. Nauk 433, 559 (2010).

    Google Scholar 

  30. T. L. Krasnikova, P. I. Nikitin, T. I. Ksenevich, et al., Biol. Membr. 28, 68 (2011).

    CAS  Google Scholar 

  31. A. E. Ivanov, H. Larsson, I. Yu. Galaev, and B. Mattiasson, Polymer 45, 2495 (2004).

    Article  CAS  Google Scholar 

  32. Siqi Li, E. N. Davis, J. Anderson, Qiao Lin, and Qian Wang, Biomacromolecules 10, 113 (2009).

    Article  CAS  Google Scholar 

  33. Polymer Handbook, Ed. by J. Brandrup and E. H. Immergut (Wiley, New York, 1989), p. VII–8.

    Google Scholar 

  34. P. Liu, W. M. Liu, and Q. J. Xue, Eur. Polym. J. 40, 267 (2004).

    Article  CAS  Google Scholar 

  35. J. F. Verchere and M. Hlaibi, Polyhedron 6, 1415 (1987).

    Article  CAS  Google Scholar 

  36. A. Matsumoto, S. Ikeda, A. Harada, and K. Kataoka, Biomacromolecules 4, 1410 (2003).

    Article  CAS  Google Scholar 

  37. H. Kanazawa, Y. Matsushima, and T. Okano, Trends Anal. Chem. 17, 435 (1998).

    Article  CAS  Google Scholar 

  38. A. E. Ivanov, L. S. Zhigis, E. V. Kurganova, and V. P. Zubov, J. Chromatogr., A 776, 75 (1997).

    Article  CAS  Google Scholar 

  39. C. L. Laboisse, Biochimie 68, 611 (1986).

    Article  CAS  Google Scholar 

  40. M. Mantle and A. Allen, Biochem. J. 195, 267 (1981).

    CAS  Google Scholar 

  41. G. T. Morin, M.-F. Paugam, M. P. Hughes, and B. D. Smith, Org. Chem. 59, 2724 (1994).

    Article  CAS  Google Scholar 

  42. K. Djanashvili, L. Frullano, and J. A. Peters, Chem.-Eur. J. 11, 4010 (2005).

    Article  CAS  Google Scholar 

  43. D. J. Thornton, M. Howart, P. L. Devine, and J. K. Sheehan, Anal. Biochem. 227, 162 (1995).

    Article  CAS  Google Scholar 

  44. S. Lee, M. Muller, K. Rezvan, and N. D. Spencer, Langmuir 21, 8344 (2005).

    Article  CAS  Google Scholar 

  45. J. McColl, G. E. Yakubov, and J. J. Ramsden, Langmuir 23, 7096 (2007).

    Article  CAS  Google Scholar 

  46. T. Sandberg, H. Blom, and K. D. Caldwell, J. Biomed. Mater. Res. A 91, 762 (2009).

    Google Scholar 

  47. M. Dowlut and D. Hall, J. Am. Chem. Soc. 128, 4226 (2006).

    Article  CAS  Google Scholar 

  48. V. S. Zaitsev, V. A. Izumrudov, A. B. Zezin, and V. A. Kabanov, Dokl. Akad. Nauk 323, 890 (1992).

    CAS  Google Scholar 

  49. V. A. Izumrudov, Usp. Khim. 77, 401 (2008).

    Google Scholar 

  50. P. V. Plotnikova, O. L. Vlasova, A. R. Groshnikova, et al., Zh. Prikl. Khim. (S.-Peterburg) 81, 1533 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vikhrov.

Additional information

Original Russian Text © A.E. Ivanov, N.M. Solodukhina, L. Nilsson, M.P. Nikitin, P.I. Nikitin, V.P. Zubov, A.A. Vikhrov, 2012, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2012, Vol. 54, No. 1, pp. 3–13.

This work was supported by the Russian Foundation for Basic Research (project nos. 11-02-01440-a and 11-04-12181-ofi-m-2011), State Contracts 16.512.11.2124 and 14.740.11.0450, and the Visby Program of the Swedish Institute (project no. 01325/2007).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A.E., Solodukhina, N.M., Nilsson, L. et al. Binding of mucin to water-soluble and surface-grafted boronate-containing polymers. Polym. Sci. Ser. A 54, 1–10 (2012). https://doi.org/10.1134/S0965545X12010026

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X12010026

Keywords

Navigation