Skip to main content
Log in

Porosity of monolithic macroporous sorbents: Inverse hydrodynamic and size-exclusion chromatography study

  • Structure and Properties
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Macroporous monolithic sorbents based on divinylbenzene are prepared in capillary tubes with the use of poor porogens of various sizes and molecular masses. The porosity of sorbents is studied via gravimetry and inverse hydrodynamic and size-exclusion chromatography methods. It is shown that all sorbents possess the biporous structure. Macropores with sizes on the order of a micrometer form an interconnected structure through which a solvent flows (flow-through pores). The diameter of impermeable pores is 30–40-molecular-mass solutes solely. As the molecular mass of the poor porogen decreases, the sizes of flow-through pores and the permeability of the monolith decline. At the same time, the fraction of free volume within the monolith accessible for the separation of polymer molecules is the highest for the sorbent prepared with the use of nonanol as a poor porogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. E. Ergozhin, High-Permeable Ionites (Nauka, Alma-Ata, 1979) [in Russian].

    Google Scholar 

  2. T. B. Tennikova, M. Bleha, F. Svec, et al., J. Chromatogr. 555, 97 (1991).

    Article  CAS  Google Scholar 

  3. B. G. Belenkii, A. M. Podkladenko, O. I. Kurenbin, et al., J. Chromatogr. 645, 1 (1993).

    Article  CAS  Google Scholar 

  4. M. B. Tennikov, N. V. Gazdina, T. B. Tennikova, and F. Svec, J. Chromatogr., A 798, 55 (1998).

    Article  CAS  Google Scholar 

  5. F. Svec and C. G. Huber, Anal. Chem. 78, 2100 (2006).

    Article  CAS  Google Scholar 

  6. E. G. Vlakh and T. B. Tennikova, J. Chromatogr., A 1216, 2637 (2009).

    Article  CAS  Google Scholar 

  7. M. Motokawa, H. Kobayashi, N. Ishizuka, et al., J. Chromatogr., A 961, 53 (2002).

    Article  CAS  Google Scholar 

  8. G. Guiochon, J. Chromatogr., A 1168, 101 (2007).

    Article  CAS  Google Scholar 

  9. Monolithic Materials: Preparation, Properties and Applications (Journal of Chromatography Library), Ed. by F. Svec, T. B. Tennikova, and Z. Deyl (Elsevier, Amsterdam, 2003).

    Google Scholar 

  10. N. Ishizuka, H. Minakuchi, K. Nakanishi, et al., J. Chromatogr., A 797, 133 (1998).

    Article  CAS  Google Scholar 

  11. K. Kanamori, K. Nakanishi, and T. Hanada, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 18, 2407 (2006).

    Article  CAS  Google Scholar 

  12. E. C. Peters, F. Svec, J. M. J. Frechet, C. Viklund, and K. Irgum, Macromolecules 32, 6377 (1999).

    Article  CAS  Google Scholar 

  13. D. Lubda, W. Lindner, M. Quaglia, et al., J. Chromatogr., A 1083, 14 (2005).

    Article  CAS  Google Scholar 

  14. F. Svec and J. M. J. Frechet, Macromolecules 28, 7580 (1995).

    Article  CAS  Google Scholar 

  15. A. A. Korolev, V. E. Shiryaeva, T. P. Popova, et al., Polymer Science, Ser. A 48, 779 (2006) [Vysokomol. Soedin., Ser. A 48, 1373 (2006)].

    Article  Google Scholar 

  16. D. H. Freeman and I. C. Poinescu, Anal. Chem. 49, 1183 (1977).

    Article  CAS  Google Scholar 

  17. M. E. Van Kreveld and N. Hoed, J. Chromatogr. 149, 71 (1978).

    Article  Google Scholar 

  18. J. H. Knox and H. P. Scott, J. Chromatogr. 316, 311 (1984).

    Article  CAS  Google Scholar 

  19. A. A. Gorbunov, L. Ya. Solovyova, and V. A. Pasechnik, J. Chromatogr. 448, 307 (1988).

    Article  CAS  Google Scholar 

  20. M. Al-Bokari, D. Cherrak, and G. Guiochon, J. Chromatogr., A 975, 275 (2002).

    Article  CAS  Google Scholar 

  21. B. A. Grimes, R. Skudas, K. K. Unger, and D. Lubda, J. Chromatogr., A 1144, 14 (2007).

    Article  CAS  Google Scholar 

  22. G. Stegeman, J. C. Kraak, and H. Poppe, J. Chromatogr., A 550, 721 (1991).

    Article  CAS  Google Scholar 

  23. E. F. Casassa and Y. Tagami, Macromolecules 2, 14 (1969).

    Article  CAS  Google Scholar 

  24. J. Urban, S. Eeltink, P. Jandera, and P. J. Schoenmakers, J. Chromatogr., A 1182, 161 (2008).

    Article  CAS  Google Scholar 

  25. G. Stegeman, R. Oostervink, J. C. Kraak, et al., J. Chromatogr., A 506, 547 (1990).

    Article  CAS  Google Scholar 

  26. E. A. DiMarzio and C. M. Guttman, Macromolecules 3, 131 (1970).

    Article  CAS  Google Scholar 

  27. M. E. Van Kreveld and N. Van den Hoed, J. Chromatogr. 83, 111 (1973).

    Article  Google Scholar 

  28. L. Trojer, S. H. Lubbad, C. P. Bisjak, and G. K. Bonn, J. Chromatogr., A 1117, 56 (2006).

    Article  CAS  Google Scholar 

  29. S. Mauran, L. Rigaud, and O. Coudevylle, Trans. Porous Media 43, 355 (2001).

    Article  Google Scholar 

  30. D. M. Meunier, P. B. Smith, and S. A. Baker, Macromolecules 38, 5313 (2005).

    Article  CAS  Google Scholar 

  31. M. Al-Bokari, D. Cherrak, and G. Guiochon, J. Chromatogr., A 975, 275 (2002).

    Article  CAS  Google Scholar 

  32. R. Tijssen, J. Bos, and M. E. Van Kreveld, Anal. Chem. 58, 3036 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kurganov.

Additional information

Original Russian Text © E.N. Viktorova, A.A. Korolev, T.R. Ibragimov, A.A. Kurganov, 2011, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2011, Vol. 53, No. 10, pp. 1714–1721.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viktorova, E.N., Korolev, A.A., Ibragimov, T.R. et al. Porosity of monolithic macroporous sorbents: Inverse hydrodynamic and size-exclusion chromatography study. Polym. Sci. Ser. A 53, 899–905 (2011). https://doi.org/10.1134/S0965545X11100117

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X11100117

Keywords

Navigation