Skip to main content
Log in

Self-organization of sulfopolystyrene ionomers in solutions: Dependence on the polarity of the solution and the content of ionogenic groups in chains

  • Solutions
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The self-organization of ionomers of sulfonated polystyrene containing different amounts of SO3Na ionogenic groups (0.5, 1.35, and 2.6 mol %) in three solvents (benzene, toluene, and THF) is studied via the methods of neutron scattering. It is shown that, in toluene, ionogenic groups form “effective” chains of up to 10–20 macromolecules owing to aggregation. In benzene, chains of both the PS precursor and ionomers are surrounded by volume solvate shells in the form of ∼4-nm-dia tubes that hamper interaction between ionomers via ionogenic groups. The tendency of ionomer chains toward aggregation in benzene is enhanced as the content of polar groups in chains is increased to 2.6 mol %. The diameter of solvate shells around chains decreases to ∼1 nm, and chains associate to form denser structures. In this case, the degree of integration of macromolecules turns out to be smaller than that in toluene. In THF, the processes of solvation and structuring of PS precursor chains are well defined and compete with tendencies toward association through ionogenic groups in solutions of ionomers. The formation of developed supramolecular structures in THF is hindered by the shielding of the potentials of interaction between ion pairs because of a high dielectric constant of the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Eisenberg and M. King, Ion Containing Polymers: Physical Properties and Structure (Academic, New York, 1977).

    Google Scholar 

  2. Structure and Properties of Ionomers, NATO ASI Ser., Ser. 198, Ed. by M. Pineri and A. Eisenberg (Reidel, Dordrecht, 1987).

    Google Scholar 

  3. A. Eisenberg, B. Hird, and R. B. Moore, Macromolecules 23, 4098 (1990).

    Article  CAS  Google Scholar 

  4. D. A. Pebalk, E. B. Bartmanov, and V. P. Shibaev, Usp. Khim. 74, 610 (2005).

    Google Scholar 

  5. R. H. Colbi, X. Zheng, M. H. Rafailovich, et al., Phys. Rev. Lett. 81, 3876 (1998).

    Article  Google Scholar 

  6. V. T. Lebedev, A. B. Mel’nikov, L. V. Vinogradova, and Gy. Török, Polymer Science, Ser. A 51, 277 (2009) [Vysokomol. Soedin., Ser. A 51, 407 (2009)].

    Article  Google Scholar 

  7. V. T. Lebedev, A. B. Mel’nikov, L. V. Vinogradova, and Gy. Török, Polymer Science, Ser. A 51, 372 (2009) [Vysokomol. Soedin., Ser. A 51, 572 (2009)].

    Article  Google Scholar 

  8. V. T. Lebedev, D. Török, A. B. Mel’nikov, et al., Poverkhnost. Rentgen. Sinkhrotron. Neitron. Issled., No. 8, 16 (2009).

  9. V. T. Lebedev, A. B. Mel’nikov, and L. V. Vinogradova, Polymer Science, Ser. C 52, 111 (2010) [Vysokomol. Soedin., Ser. C 52, 1348 (2010)].

    Article  Google Scholar 

  10. H. G. Elias, in Light Scattering from Polymer Solutions, Ed. by M. B. Huglin (Academic, London, 1972), Ch. 9.

    Google Scholar 

  11. J. F. Joanny, Polymer 21, 71 (1980).

    Article  CAS  Google Scholar 

  12. J. Wittmer, A. Johner, and J. F. Joanny, J. Phys. II 5, 635 (1995).

    Article  CAS  Google Scholar 

  13. E. Yu. Kramarenko, I. Ya. Erukhimovich, and A. R. Khokhlov, Macromol. Theory Simul. 11, 462 (2002).

    Article  CAS  Google Scholar 

  14. E. Yu. Kramarenko, I. Ya. Erukhimovich, and A. R. Khokhlov, Polymer Science, Ser. A 46, 974 (2004) [Vysokomol. Soedin., Ser. A 46, 1570 (2004)].

    Google Scholar 

  15. I. A. Nyrkova, A. R. Khokhlov, and M. Doi, Macromolecules 26, 3601 (1993).

    Article  CAS  Google Scholar 

  16. A. N. Semenov, I. A. Nyrkova, and A. R. Khokhlov, Macromolecules 28, 7491 (1995).

    Article  CAS  Google Scholar 

  17. A. N. Semenov, J. F. Joanny, and A. R. Khokhlov, Macromolecules 28, 1066 (1995).

    Article  CAS  Google Scholar 

  18. S. El Hasri, B. Ray, A. Thierry, and J.-M. Guenet, Macromolecules 37, 4124 (2004).

    Article  Google Scholar 

  19. S. Malik, C. Rochas, M. Schmutz, and J.-M. Guenet, Macromolecules 38, 6024 (2005).

    Article  CAS  Google Scholar 

  20. S. Malik, D. Roizard, and J.-M. Guenet, Macromolecules 39, 5957 (2006).

    Article  CAS  Google Scholar 

  21. B. Ray, S. El Hasri, A. Thierry, et al., Macromolecules 35, 9730 (2002).

    Article  CAS  Google Scholar 

  22. C. Daniel, M. D. De Luca, A. Brulet, et al., Polymer 37, 1273 (1996).

    Article  CAS  Google Scholar 

  23. C. Daniel, A. Brulet, A. Menelle, and J.-M. Guenet, Polymer 38, 4193 (1997).

    Article  CAS  Google Scholar 

  24. F. Kaneko, Y. Uda, A. Kajiwara, and N. Tanogaki, Macromol. Rapid Commun. 27, 1643 (2006).

    Article  CAS  Google Scholar 

  25. J. D. Rudder, H. Berghmans, F. C. D. Schryver, et al., Macromolecules 35, 9529 (2002).

    Article  Google Scholar 

  26. S. Moyses, P. Sonntag, S. J. Spells, and O. Laveix, Polymer 39, 3665 (1998).

    Article  CAS  Google Scholar 

  27. J. Li, W. Li, H. Huo, et al., Macromolecules 41, 901 (2008).

    Article  CAS  Google Scholar 

  28. H. L. Wagner, J. Phys. Chem. Ref. Data 14, 1101 (1985).

    Article  CAS  Google Scholar 

  29. J. S. King, W. Boyer, G. D. Wignall, and R. Ullman, Macromolecules 18, 709 (1985).

    Article  CAS  Google Scholar 

  30. K. Venkataswamy and A. M. Jamieson, Macromolecules 19, 124 (1986).

    Article  CAS  Google Scholar 

  31. V. T. Lebedev, D. N. Orlova, A. B. Mel’nikov, and L. V. Vinogradova, Polymer Science, Ser. A 52, 228 (2010) [Vysokomol. Soedin., Ser. A 52, 378 (2010)].

    Article  Google Scholar 

  32. J. Roots and B. Nystrom, Macromolecules 13, 1595 (1980).

    Article  CAS  Google Scholar 

  33. P. G. De Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979; Mir, Moscow, 1982).

    Google Scholar 

  34. Physical Quantities: A Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Atomenergoizdat, Moscow) [in Russian].

  35. V. A. Rabinovich and Z. Ya. Khavin, Abridged Chemical Handbook (Khimiya, Leningrad, 1977) [in Russian].

    Google Scholar 

  36. D. I. Svergun and L. A. Feigin, Small-Angle X-Ray and Neutron Scattering (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  37. D. I. Svergun, J. Crystallogr. 25, 495 (1992).

    Article  Google Scholar 

  38. A. E. Nesterov, Handbook on Physical Chemistry of Polymers: Properties of Polymer Solutions and Blends (Naukova Dumka, Kiev, 1984) [in Russian].

    Google Scholar 

  39. V. I. Irzhak, B. A. Rozenberg, and N. S. Enikolopyan, Polymer Networks (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Lebedev.

Additional information

Original Russian Text © V.T. Lebedev, A.B. Mel’nikov, Gy. Török, L.V. Vinogradova, 2011, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2011, Vol. 53, No. 8, pp. 1362–1375.

This article is based on the invited report presented at the 5th Russian Kargin Conference “Polymers 2010”.

This work was supported by the Russian Foundation for Basic Research (project no. 07-03-00074a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, V.T., Mel’nikov, A.B., Török, G. et al. Self-organization of sulfopolystyrene ionomers in solutions: Dependence on the polarity of the solution and the content of ionogenic groups in chains. Polym. Sci. Ser. A 53, 678–690 (2011). https://doi.org/10.1134/S0965545X11080049

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X11080049

Keywords

Navigation