Skip to main content
Log in

Magnetic polystyrene nanocapsules with core-shell morphology obtained by emulsifier-free miniemulsion polymerization

  • Composites
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Nanocapsules containing hexadecane and Fe3O4 magnetic nanoparticles as core materials and polystyrene as shell were produced in a new method through emulsifier-free miniemulsion polymerization using 2,2′-azobis(2-amidinopropane) dihydrochloride (V-50) as a water-soluble initiator. The effect of some parameters such as the amounts of Fe3O4 and initiator on morphology of resulting nanocapsules was studied. Transmission electron microscopy showed that the products had latex particles having a size range of about 300–1300 nanometer and both magnetic nanocapsules with core-shell morphology and solid particles. The phase transition temperature and phase transition heat of the produced capsules were determined by differential scanning calorimetric analyses. Thermal properties of the latex were compared with those of magneticparticles-free latex and with those of latex free of both magnetic particles and hexadecane. Thermogravimetric analysis was also used to confirm the encapsulation and to determine the amounts of hexadecane and Fe3O4 within the capsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Davis and L. Illum, Biomaterials 9, 111 (1988).

    Article  CAS  Google Scholar 

  2. M. S. Romero-Cano and B. Vincent, J. Controlled Release 82, 127 (2002).

    Article  CAS  Google Scholar 

  3. M. Q. Slagt, S. E. Stiriba, R. G. M. Klein Gebbink, et al., Macromolecules 35, 5734 (2002).

    Article  CAS  Google Scholar 

  4. D. Moinard-Checot, Y. Chevalier, S. Briancon, et al., J. Nanosci. Nanotechnol. 6, 2664 (2006).

    Article  CAS  Google Scholar 

  5. J. Su, L. Wang, and L. Ren, J. Appl. Polym. Sci. 101, 1522 (2006).

    Article  CAS  Google Scholar 

  6. Y. Taguchi, H. Yokoyama, H. Kado, and M. Tanaka, Colloids Surf. A, Physicochem. Eng. Asp. 301, 41 (2007).

    Article  CAS  Google Scholar 

  7. C. Berkland, E. Pollauf, N. Varde, et al., Pharm. Res. 24, 1007 (2007).

    Article  CAS  Google Scholar 

  8. K. Krauel, L. Girvan, S. Hook, and T. Rades, Micron 38, 796 (2007).

    Article  CAS  Google Scholar 

  9. S. Lelu, C. Novat, C. Graillat, et al., Polym. Int. 52, 542 (2003).

    Article  CAS  Google Scholar 

  10. M. M. Maye, Y. Lou, and C. J. Zhong, Langmuir 16, 7520 (2000).

    Article  CAS  Google Scholar 

  11. M. R. Grancio and D. J. Williams, J. Polym. Sci., Part A-1 8, 2617 (1970).

    Article  CAS  Google Scholar 

  12. Y. Frere, L. Danicher, and P. Gramain, Eur. Polym. J. 34, 193 (1998).

    Article  CAS  Google Scholar 

  13. B. K. Kim, S. J. Hwang, J. B. Park, and H. J. Park, J. Microencapsul. 19, 811 (2002).

    Article  CAS  Google Scholar 

  14. K. Landfester, Annu. Rev. Mater. Res. 36, 231 (2006).

    Article  CAS  Google Scholar 

  15. F. Tiarks, K. Landfester, and M. Antonietti, Macromol. Chem. Phys. 202, 51 (2001).

    Article  CAS  Google Scholar 

  16. B. Erdem, E. D. Sudol, V. L. Dimonie, and M. El-Aasser, J. Polym. Sci., Part A: Polym. Chem. 38, 4419 (2000).

    Article  CAS  Google Scholar 

  17. K. Sugibayashi, Y. Morimoto, T. Nadai, and Y. Kato, Chem. Pharm. Bull. 25, 3433 (1977).

    CAS  Google Scholar 

  18. E. Ciroonchatapan, M. Ueno, H. Sato, et al., Pharm. Res. 12, 1176 (1995).

    Article  Google Scholar 

  19. P. K. Gupta, and C. T. Hung, Life Sci. 44, 175 (1989).

    Article  CAS  Google Scholar 

  20. D. K. Kim, Y. Zhang, W. Voit, et al., Scr. Mater. 44, 1713 (2001).

    Article  CAS  Google Scholar 

  21. M. Uhlen, Nature (London) 340, 733 (1989).

    Article  CAS  Google Scholar 

  22. V. Holzapfel, M. Lorenz, C.K. Weiss, et al., J. Phys.: Condens. Matter 18, S2581 (2006).

    Article  CAS  Google Scholar 

  23. I. Hilger, W. Andra, R. Hergt, et al., Radiology 218, 570 (2001).

    CAS  Google Scholar 

  24. K. Landfester and L. P. Ramirez, J. Phys.: Condens. Matter 15, 1345 (2003).

    Article  Google Scholar 

  25. L. P. Ramirez and K. Landfester, Macromol. Chem. Phys. 22, 204 (2003).

    Google Scholar 

  26. V. Holzapfel, A. Musyanovych, K. Landfester, et al., Macromol. Chem. Phys. 206, 2440 (2005).

    Article  CAS  Google Scholar 

  27. L. Torini, J. F. Argillier, and N. Zydowicz, Macromolecules 38, 3225 (2005).

    Article  CAS  Google Scholar 

  28. R. Faridi-Majidi, N. Sharifi-Sanjani, and F. Agend, Thin Solid Films 515, 368 (2006).

    Article  CAS  Google Scholar 

  29. Emulsion Polymerization and Emulsion Polymers, Ed. by P. A. Lovell and M. S. El-Aasser (Wiley, New York, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Madani.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madani, M., Sharifi-Sanjani, N. & Faridi-Majidi, R. Magnetic polystyrene nanocapsules with core-shell morphology obtained by emulsifier-free miniemulsion polymerization. Polym. Sci. Ser. A 53, 143–148 (2011). https://doi.org/10.1134/S0965545X11020088

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X11020088

Keywords

Navigation