Skip to main content
Log in

Energetics of the binding of Cu(II) ions by thermosensitive copolymers of N-vinylcaprolactam and N-vinylimidazole in different conformational states of macromolecules

  • Thermodynamics
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Random and protein-like copolymers based on N-vinylcaprolactam and N-vinylimidazole are synthesized by free radical polymerization in an aqueous solution. The above copolymers show a different thermal behavior in aqueous media at pH 7.2. At 45°C, the solution of a random copolymer experiences phase separation, whereas a protein-like copolymer undergoes a transition from the unfolded conformation to the compact conformation without any phase separation. The method of isothermal titration calorimetry is used to study the binding of Cu(II) ions by protein-like and random copolymers of N-vinylcaprolactam and N-vinylimidazole at 25 and 45°C, which correspond to different conformational states of macromolecules. The standard enthalpy and constant of binding are estimated. For both copolymers, the enthalpies of binding are negative and similar. When temperature is increased from 25 to 45°C, the constant of binding of copper ions by a protein-like copolymer increases by more than three orders of magnitude, whereas the corresponding constant of a random copolymer remains almost unchanged. Therefore, the transition of protein-like copolymer from the coiled conformation to the compact conformation noticeably facilitates the formation of an imidazole quasi-receptor, which is characterized by a certain spatial configuration and by a high affinity for the functional ligand. This effect is provided by an entropy gain no less than 50 J/(mol K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Lehninger, Principles of Biochemistry (Worth, New York, 1982).

    Google Scholar 

  2. A. V. Finkel’shtein and O. B. Ptitsyn, Physics of Proteins (Knizhnyi Dom “Universitet”, Moscow, 2002) [in Russian].

    Google Scholar 

  3. A. R. Khokhlov and P. G. Khalatur, Curr. Opin. Solid State Mater. Sci. 8, 3 (2004).

    Article  CAS  Google Scholar 

  4. R. Breslow, J. Biol. Chem. 284, 1337 (2009).

    Article  CAS  Google Scholar 

  5. P. G. Khalatur and A. R. Khokhlov, Adv. Polym. Sci. 195, 1 (2006).

    Article  CAS  Google Scholar 

  6. A. N. Semenov, Macromolecules 37, 226 (2004).

    Article  CAS  Google Scholar 

  7. A. R. Khokhlov and P. G. Khalatur, Physica A (Amsterdam) 249, 253 (1998).

    CAS  Google Scholar 

  8. A. R. Khokhlov and P. G. Khalatur, Phys. Rev. Lett. 82, 3456 (1999).

    Article  CAS  Google Scholar 

  9. A. R. Khokhlov, A. V. Berezkin, and P. G. Khalatur, J. Polym. Sci., Part A: Polym. Chem. 42, 5339 (2004).

    Article  CAS  Google Scholar 

  10. N. M. Bergmann and N. A. Peppas, Prog. Polym. Sci. 33, 271 (2008).

    Article  CAS  Google Scholar 

  11. V. I. Lozinsky, Adv. Polym. Sci. 196, 87 (2006).

    Article  CAS  Google Scholar 

  12. M. Siu, G. Zhang, and C. Wu, Macromolecules 35, 2723 (2002).

    Article  CAS  Google Scholar 

  13. V. I. Lozinsky, I. A. Simenel, V. K. Kulakova, et al., Macromolecules 36, 7308 (2003).

    Article  CAS  Google Scholar 

  14. V. I. Lozinskii, I. A. Simenel, E. A. Kurskaya, et al., Dokl. Akad. Nauk 375, 637 (2000).

    CAS  Google Scholar 

  15. V. I. Lozinskii, I. A. Simenel, M. G. Semenova, et al., Polymer Science, Ser. A 48, 435 (2006) [Vysokomol. Soedin., Ser. A 48, 673 (2006)].

    Article  Google Scholar 

  16. D. H. Gold and H. P. Gregor, J. Phys. Chem., A 64, 1464 (1960).

    CAS  Google Scholar 

  17. Y. Zhang, S. Akilesh, and D. E. Wilcox, Inorg. Chem. 39, 3057 (2000).

    Article  CAS  Google Scholar 

  18. D. E. Wilcox, Inorg. Chim. Acta 361, 857 (2008).

    Article  CAS  Google Scholar 

  19. Use of Isothermal Titration Calorimetry to Measure Enzyme Kinetic Parameters (Microcal, Northampton, 2004).

  20. G. V. Kotelnikov, S. P. Moiseyeva, E. V. Mezhburd, and V. P. Krayev, J. Therm. Anal. Calorim. 62, 39 (2000).

    Article  CAS  Google Scholar 

  21. G. V. Kotelnikov, S. P. Moiseyeva, E. V. Mezhburd, and V. P. Krayev, J. Therm. Anal. Calorim. 68, 803 (2002).

    Article  CAS  Google Scholar 

  22. G. V. Kotelnikov, S. P. Moiseyeva, E. V. Mezhburd, et al., J. Therm. Anal. Calorim. 81, 255 (2005).

    Article  CAS  Google Scholar 

  23. G. V. Kotel’nikov, S. P. Moiseeva, V. Ya. Grinberg, et al., RF Patent No. 2335743, Byull. Izobret., No. 28 (2008).

  24. G. V. Kotel’nikov, S. P. Moiseeva, V. Ya. Grinberg, et al., RF Patent No. 2335744, Byull. Izobret., No. 28 (2008).

  25. L. E. Briggner and I. Wadso, J. Biochem. Biophys. Methods 22, 101 (1991).

    Article  CAS  Google Scholar 

  26. A. Laukkanen, L. Valtola, F. M. Winnik, and H. Tenhu, Macromolecules 37, 2268 (2004).

    Article  CAS  Google Scholar 

  27. Y. Maeda, T. Nakamura, and I. Ikeda, Macromolecules 35, 217 (2002).

    Article  CAS  Google Scholar 

  28. Ch. Kantor and P. Schimmel, Biophysical Chemistry (Freeman, San Francisco, 1980; Mir, Moscow, 1985).

    Google Scholar 

  29. I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans, London, 1954; Nauka, Novosibirsk, 1966).

    Google Scholar 

  30. A. V. Berezkin, P. G. Khalatur, A. R. Khokhlov, and P. Reineker, New J. Phys. 6, 44 (2004).

    Article  Google Scholar 

  31. A. R. Khokhlov, Macromol. Symp. 143, 207 (1999).

    CAS  Google Scholar 

  32. A. R. Khokhlov and P. G. Khalatur, Curr. Opin. Colloid Interface Sci. 10, 22 (2005).

    Article  CAS  Google Scholar 

  33. R. Breslow, Pure Appl. Chem. 66, 1573 (1994).

    Article  CAS  Google Scholar 

  34. R. Breslow, Pure Appl. Chem. 70, 267 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Burova.

Additional information

Original Russian Text © T.V. Burova, N.V. Grinberg, V.I. Lozinskii, S.P. Moiseeva, G.V. Kotel’nikov, V.Ya. Grinberg, A.R. Khokhlov, 2010, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2010, Vol. 52, No. 4, pp. 554–560.

This work was supported by the Russian Foundation for Basic Research, project no. 06-08-01237a, and by the Division of Chemistry and Materials Science, Russian Academy of Sciences, under the program Development and Study of Macromolecules and Macromolecular Structures of New Generations, project Synthesis, Characteristics, and Catalytic Activity of Copolymers Whose Macromolecules Possess Protein-like Conformations in Aqueous Media (Synthetic Enzymes).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burova, T.V., Grinberg, N.V., Lozinskii, V.I. et al. Energetics of the binding of Cu(II) ions by thermosensitive copolymers of N-vinylcaprolactam and N-vinylimidazole in different conformational states of macromolecules. Polym. Sci. Ser. A 52, 356–361 (2010). https://doi.org/10.1134/S0965545X10040024

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X10040024

Keywords

Navigation