Skip to main content
Log in

The chaos-to-order transition in critical modes of shearing for polymer and nanocomposite melts

  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Two unusual experimental phenomena that were found for polymer melts or solutions containing the dispersed phases of Na-montmorillonite or detonation synthesis nanodiamond have been studied. These phenomena consist in the reduction of viscosity upon addition of specified amount of particles and in the formation of regular morphology by these particles in strong flows looking as a system of concentric rings. In other words, under certain conditions, there is transition to stratified shear stream and the viscosity of such a regular heterogeneous system canbe lower than that for the polymer matrix itself. Hence, both phenomena are mutually related; and the main problem here is the analysis of driving forces leading to the regular texture formation taking place in intense flows for unfilled viscoelastic polymers as well. As a preliminary explanation, the conception of the special kind of the elastic instability is discussed. This instability appears either in the regular helix-like structure formation or in the irregular elastic turbulence. The particles of the filler play a role of tracers that revealed the relief of texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polymer-Clay Nanocomposites, Ed. by T. J. Pinnavaia and G. W. Beall (Wiley, New York, 2000).

    Google Scholar 

  2. P. Zhang, Y. Huang, P. H. Guebelle, et al., Solids Struct. 39, 3893 (2002).

    Article  Google Scholar 

  3. V. Yu. Dolmatov, Ross. Nanotekhnol. 2(7–8), 19 (2007).

    Google Scholar 

  4. R. Krishnamoorti and E. P. Giannelis, Macromolecules 30, 4097 (1997).

    Article  CAS  Google Scholar 

  5. D. Garcia-Lopez, O. Picazo, J. C. Merino, and J. M. Pastor, Eur. Polym. J. 39, 945 (2003).

    Article  CAS  Google Scholar 

  6. M. Okamoto, S. Morita, Y. H. Kim, et al., Polymer 42, 1201 (2001).

    Article  CAS  Google Scholar 

  7. Y. T. Lim and O. O. Park, Rheol. Acta 40, 220 (2001).

    Article  CAS  Google Scholar 

  8. R. Wagener and T. J. G. Reisinger, Polymer 44, 7513 (2003).

    Article  CAS  Google Scholar 

  9. V. G. Kulichikhin, S. V. Antonov, V. V. Makarova, et al., Ross. Nanotekhnol. 1(1–2), 170 (2006).

    Google Scholar 

  10. V. Kulichikhin, S. Antonov, S. Parandoosh, et al., US Patent No. 7456331 (2008).

  11. M. E. Mackay, T. T. Dao, A. Tuteja, et al., Nature Mater. 2, 762 (2003).

    Article  CAS  Google Scholar 

  12. V. Kulichikhin, in Proceedings of 4 Annual European Conference on Rheology, Naples, 2007, p. 44.

  13. M. E. Mackay and D. J. Hanson, J. Rheol. (N. Y.) 42, 1505 (1998).

    CAS  Google Scholar 

  14. V. F. Shumsky, Y. Lipatov, V. G. Kulichikhin, et al., Rheol. Acta 32, 352 (1993).

    Article  CAS  Google Scholar 

  15. H. J. G. P. Goosens, in Proceedings of European Polymer Congress, Portoroz, 2007, IL7.3.7.

  16. V. Kulichikhin, in Proceedings of European Polymer Congress, Portoroz, 2007, OC7.3.17.

  17. M. K. Lyon, D. W. Mead, R. E. Elliot, and L. G. Leal, J. Rheol. (N. Y.) 45, 881 (2001).

    CAS  Google Scholar 

  18. J. Vermant, L. Raynau, J. Mewis, et al., J. Colloid Interface Sci. 211, 221 (1999).

    Article  CAS  Google Scholar 

  19. H. Giesekus, Z. Angew. Math. Mech. 58, 26 (1978).

    Google Scholar 

  20. V. Kulichikhin, E. Plotnikova, A. Subbotin, and N. Platé, Rheol. Acta 40, 49 (2001).

    Article  CAS  Google Scholar 

  21. V. G. Kulichikhin, E. P. Plotnikova, A. K. Tereshin, et al., Polymer Science, Ser. C 42 (2000) [Vysokomol. Soedin., Ser. C 42, 2235 (2000)].

    Google Scholar 

  22. V. Kulichikhin, A. Semakov, and V. Karbushev, in Proceedings of Nanotechnology International Forum, Scientific and Technological Sections, Moscow, 2008, Vol. 1, p. 297.

  23. G. V. Vinogradov, A. Ya. Malkin, E. P. Plotnikova, et al., Vysokomol. Soedin., Ser. A 20, 226 (1978).

    CAS  Google Scholar 

  24. V. G. Kulichikhin, L. A. Tsamalashvili, E. P. Plotnikova, et al., Polymer Science, Ser. A 45 (2003) [Vysokomol. Soedin., Ser. A 45, 944 (2003)].

    Google Scholar 

  25. A. V. Kozlov, A. V. Semakov, A. V. Rebrov, and V. G. Kulichikhin, in Proceedings of 22 Symposium on Rheology, Valdai, 2004, p. 69.

  26. M. Abramowitz and I. Stegun, http://en.wikipedia.org/wiki/Generalized-mean

  27. G. V. Vinogradov, Vysokomol. Soedin., Ser. A 13, 294 (1971).

    CAS  Google Scholar 

  28. G. V. Vinogradov, Polym. Eng. Sci. 21, 339 (1981).

    Article  CAS  Google Scholar 

  29. G. Ianniruberto, F. Grec, and G. Marrucci, Ind. Eng. Chem. Res. 33, 2404 (1994).

    Article  CAS  Google Scholar 

  30. V. G. Kulichikhin, O. V. Vasil’eva, I. A. Litvinov, et al., J. Appl. Polym. Sci. 42, 363 (1991).

    Article  CAS  Google Scholar 

  31. G. I. Taylor, Trans. R. Soc. London, A 223, 289 (1923).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kulichikhin.

Additional information

Original Russian Text © V.G. Kulichikhin, A.V. Semakov, V.V. Karbushev, N.A. Platé, S.J. Picken, 2009, published in Russian in Vysokomolekulyarnye Soedineniya, 2009, Vol. 51, No. 11, pp. 2044–2044.

The article was translated by the authors.

This study was supported by the Russian Foundation for Basic Research (project nos. 04-03-32152, 05-03-0828, and 08-03-12035) and by a collaborative project of the Netherlands Organisation for Scientific Research (NWO) and the Russian Foundation for Basic Research (Dutch-Russian Foundation), project no. 047.017.033.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulichikhin, V.G., Semakov, A.V., Karbushev, V.V. et al. The chaos-to-order transition in critical modes of shearing for polymer and nanocomposite melts. Polym. Sci. Ser. A 51, 1303 (2009). https://doi.org/10.1134/S0965545X09110169

Download citation

  • Published:

  • DOI: https://doi.org/10.1134/S0965545X09110169

Keywords

Navigation