Skip to main content
Log in

The elementary softening event in glassy systems in terms of the model of the excited state

  • Theory
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The pressure dependence of the glass-transition temperature (glass-transition lines) is described through a relationship similar to the Clausius-Clapeyron equation. The criterion for the glass-liquid transition for polymer and other glasses is calculated. According to the proposed speculations, an elementary softening event in glasses is reduced to the critical deformation of interatomic (intermolecular) linkage, which corresponds to the maximum force of attraction between atoms. A glass (an amorphous polymer) softens when the mean energy of the thermal motion of the kinetic units responsible for the viscous flow is ∼3 times higher than the work of the ultimate deformation of the interatomic bond. The nature of structural changes occurring in the course of critical displacement (excitation) of kinetic units in liquids and glasses is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Rostiashvili, V. I. Irzhak, and B. A. Rozenberg, Glass Transition in Polymers (Khimiya, Leningrad, 1987) [in Russian].

    Google Scholar 

  2. D. S. Sanditov and G. M. Bartenev, Physical Properties of Disordered Structures (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  3. S. V. Nemilov, Thermodynamic and Kinetic Aspects of the Vitreous State (CRC, Boca Raton, 1995).

    Google Scholar 

  4. G. M. Bartenev, Dokl. Akad. Nauk SSSR 76, 227 (1951).

    CAS  Google Scholar 

  5. M. V. Vol’kenshtein and O. B. Ptitsyn, Dokl. Akad. Nauk SSSR 103, 795 (1955).

    Google Scholar 

  6. A. O. Volchek, A. I. Gusarov, and A. V. Dotsenko, Fiz. Khim. Stekla 22, 417 (1996).

    Google Scholar 

  7. R. A. Chamberlin, Phys. Rev. B: Condens. Matter 48, 15638 (1993).

    CAS  Google Scholar 

  8. A. I. Olemskoi and A. V. Khomenko, Zh. Tekh. Fiz. 70(6), 10 (2000).

    Google Scholar 

  9. D. S. Sanditov, Dokl. Akad. Nauk 390, 209 (2003).

    Google Scholar 

  10. D. S. Sanditov, Polymer Science, Ser. A 47, (2005) [Vysokomol. Soedin., Ser. A 47, 478 (2005)].

    Google Scholar 

  11. V. I. Vettegren’ and K. Yu. Fridland, Opt. Spektrosk. 38, 521 (1975).

    Google Scholar 

  12. V. A. Petrov, A. Ya. Bashkarev, and V. I. Vettegren’, Physical Principles of Forecasting of Structural Material Durability (Politekhnika, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  13. D. S. Sanditov, S. S. Badmaev, T. N. Mel’nichenko, and B. D. Sanditov, Fiz. Khim. Stekla 33, 56 (2007).

    Google Scholar 

  14. Yu. V. Agrafonov, D. S. Sanditov, and Sh. B. Tsydypov, The Physics of Classical Disordered Systems (Buryat. Gos. Univ., Ulan-Ude, 2001) [in Russian].

    Google Scholar 

  15. D. S. Sanditov, Sh. B. Tsydypov, and A. N. Parfenov, Zh. Fiz. Khim. 79, 1464 (2005).

    CAS  Google Scholar 

  16. Ya. I. Frenkel’, The Kinetic Theory of Liquids (Akad. Nauk SSSR, Moscow, 1945) [in Russian].

    Google Scholar 

  17. M. P. Vukalovich and I. I. Novikov, Thermodynamics (Mashinostroenie, Moscow, 1972) [in Russian].

    Google Scholar 

  18. B. A. Belinskii, in Application of Ultraacoustics to Matter Research (Vses. Zaochn. Mashinostroit. Inst., Moscow, 1981), No. 31, p. 75.

    Google Scholar 

  19. S. V. Nemilov, Fiz. Khim. Stekla 13, 645 (1987).

    CAS  Google Scholar 

  20. N. I. Shishkin, Fiz. Tverd. Tela (Leningrad) 2, 350 (1960).

    CAS  Google Scholar 

  21. S. B. Ainbinder, E. L. Tyunina, and K. I. Tsirulya, The Properties of Polymers in Different Stressed States (Khimiya, Moscow, 1981) [in Russian].

    Google Scholar 

  22. S. Matsuoka, G. J. Aloisio, and H. E. Bair, J. Appl. Phys. 48, 4058 (1977).

    Article  CAS  Google Scholar 

  23. P. B. Macedo and T. A. Litovitz, J. Chem. Phys. 42, 245 (1965).

    Article  CAS  Google Scholar 

  24. D. S. Sanditov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 17 (1971).

  25. G. M. Bartenev and D. S. Sanditov, Relaxation Processes in Glassy Systems (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  26. J. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  27. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  CAS  Google Scholar 

  28. D. S. Sanditov and G. M. Bartenev, Zh. Fiz. Khim. 47, 2271 (1973).

    Google Scholar 

  29. S. V. Nemilov, Dokl. Akad. Nauk SSSR 181, 1427 (1968).

    CAS  Google Scholar 

  30. B. D. Sanditov, M. V. Darmaev, D. S. Sanditov, and V. V. Mantatov, Polymer Science, Ser. A 49 (2007) [Vysokomol. Soedin., Ser. A 49, 316 (2007)].

    Google Scholar 

  31. D. S. Sanditov, Polymer Science, Ser. A 49 (2007) [Vysokomol. Soedin., Ser. A 49, 832 (2007)].

    Google Scholar 

  32. B. D. Sanditov, V. V. Mantatov, and D. S. Sanditov, Polymer Science, Ser. A 49 (2007) [Vysokomol. Soedin., Ser. A 49 1679 (2007)].

    Google Scholar 

  33. G. P. Andrianova and V. A. Kargin, Vysokomol. Soedin., Ser. A 12, 3 (1970).

    CAS  Google Scholar 

  34. M. I. Bessonov and E. V. Kuvshinskii, Zavod. Lab. 28, 504 (1962).

    Google Scholar 

  35. D. Marsh, Proc. R. Soc. London, A 282, 33 (1964).

    Article  Google Scholar 

  36. D. S. Sanditov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 110 (1969).

  37. D. S. Sanditov, S. S. Badmaev, Sh. B. Tsydypov, and B. D. Sanditov, Fiz. Khim. Stekla 29, 5 (2003).

    Google Scholar 

  38. D. S. Sanditov, Sh. B. Tsydypov, and A. B. Bainova, Polymer Science, Ser. A 46, (2004) [Vysokomol. Soedin., Ser. A 46, 1185 (2004)].

    Google Scholar 

  39. P. D. Golub’ and M. D. Starostenkov, Tr. Udmurt. Gos. Univ., No. 10, 37 (1990).

  40. G. M. Bartenev and A. G. Barteneva, Relaxation Properties of Polymers (Khimiya, Moscow, 1992) [in Russian].

    Google Scholar 

  41. S. Sh. Sangadiev, Candidate’s Dissertation in Mathematics and Physics (Irkutsk, 1999).

  42. D. S. Sanditov, V. L. Mamoshin, and V. G. Arkhipov, Fiz. Khim. Stekla 19, 593 (1993).

    CAS  Google Scholar 

  43. T. N. Mel’nichenko, V. M. Rizak, and T. D. Mel’nichenko, Fiz. Khim. Stekla 29, 35 (2003).

    Google Scholar 

  44. K. Sudzuki, Kh. Fuzimori, and K. Khasimoto, Amorphous Metals (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Sanditov.

Additional information

Original Russian Text © V.V. Mantatov, B.D. Sanditov, D.S. Sanditov, 2009, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2009, Vol. 51, No. 9, pp. 1632–1642.

This work was supported by the Russian Foundation for Basic Research (project no. 05-01-00071a).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantatov, V.V., Sanditov, B.D. & Sanditov, D.S. The elementary softening event in glassy systems in terms of the model of the excited state. Polym. Sci. Ser. A 51, 1013–1022 (2009). https://doi.org/10.1134/S0965545X09090089

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X09090089

Keywords

Navigation