Skip to main content
Log in

The theory of viscoelastic characteristics of a highly stretched macromolecule in single molecule AFM

  • Theory, Modeling
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The theory for the deformation of a model macromolecule stretched by its ends under the action of high constant and low periodic forces is constructed. The macromolecule is composed of monomer units in three conformational states. The proposed theory describes the regime of a severe stretching of a macromolecule extended to a length close to its contour length, when its extension proceeds via conformational transitions between different states of monomer units. The structural parameters of the monomer unit are found to correlate with viscoelastic characteristics, which are calculated from the experimental results on the deformation of an individual macromolecule obtained by the frequency atomic force microscopy. For a monomer unit with three conformations, the force dependences of viscoelastic characteristics (effective coefficients of elasticity and friction) can show one or two minima. When the experimental dependences of the above parameters show two minima, the monomer unit can have three or more equilibrium states. With the knowledge of the viscoelastic characteristics of a macromolecule, it is possible to unequivocally estimate all structural parameters of a monomer unit for its three-state conformational model. When the force dependence of viscoelastic characteristics show only one minimum, the monomer unit can have two or more states and analysis of the corresponding viscoelastic characteristics at the minimum makes it possible to select between two- and three-state conformational models. Then, for the three-state model, experimental data allow the prediction of only equilibrium parameters of the monomer unit (position of the minima and energy); dynamic parameters (positions and height of barriers between equilibrium states) remain indeterminate. The proposed theory is used for the interpretation of the viscoelastic characteristics of dextran obtained by single-molecule AFM experiments. The three-state conformational model of a dextran unit is shown to agree better with the experimental data than with the two-state conformational model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noncontact Atomic Force Microscopy. NanoScience and Technology, Ed. by S. Morita, R. Wiesendanger, and E. Meyer (Springer, Heidelberg, 2002).

    Google Scholar 

  2. F. Giessibl, Rev. Mod. Phys. 75, 949 (2003).

    Article  CAS  Google Scholar 

  3. M. O. Gallyamov, B. Tartsch, P. Mela, et al., Phys. Chem. Chem. Phys. 9, 346 (2007).

    Article  CAS  Google Scholar 

  4. K. Mitsui, M. Hara, and A. Ikai, FEBS Lett. 385, 29 (1996).

    Article  CAS  Google Scholar 

  5. E. Evans and K. Ritchie, Biophys. J. 72, 1541 (1997).

    Article  CAS  Google Scholar 

  6. M. Rief, M. Gautel, F. Oesterhelt, et al., Science (Washington, D. C.) 276, 1109 (1997).

    Article  CAS  Google Scholar 

  7. M. Rief, F. Oesterhelt, B. Heymann, and H. Gaub, Science (Washington, D. C.) 275, 1295 (1997).

    Article  CAS  Google Scholar 

  8. P. Marszalek, A. Oberhauser, Y. Pang, and J. Fernandez, Nature (London) 396, 661 (1998).

    Article  CAS  Google Scholar 

  9. H. Li, M. Rief, F. Oesterhelt, and H. Gaub, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 10, 316 (1999).

    Article  Google Scholar 

  10. M. Rief, J. Fernandez, and H. Gaub, Phys. Rev. Lett. 81, 4764 (1998).

    Article  CAS  Google Scholar 

  11. M. Rief, H. Clausen-Schaumann, and H. Gaub, Nat. Struct. Biol. 6, 346 (1999).

    Article  CAS  Google Scholar 

  12. P. Marszalek, H. Li, A. Oberhauser, and J. Fernandez, Proc. Natl. Acad. Sci. U. S. A. 99, 4278 (2002).

    Article  CAS  Google Scholar 

  13. T. E. Fisher, P. E. Marszalek, A. F. Oberhauser, et al., J. Physiol. 520, 5 (1999).

    Article  CAS  Google Scholar 

  14. H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H. E. Gaub, Biophys. J. 78, 1997 (2000).

    Article  CAS  Google Scholar 

  15. D. Anselmetti, J. Fritz, B. Smith, and X. Fernàndez-Busquets, Single Mol. 1, 53 (2000).

    Article  CAS  Google Scholar 

  16. F. Kienberger, V. Ph. Pastushenko, G. Kada, et al., Single Mol. 1, 123 (2000).

    Article  CAS  Google Scholar 

  17. H. Li, W. Zhang, X. Zhang, et al., Macromol. Rapid Commun. 19, 609 (1998).

    Article  CAS  Google Scholar 

  18. C. Ortiz and G. Hadziioannou, Macromolecules 32, 780 (1999).

    Article  CAS  Google Scholar 

  19. M. Kawakami, K. Byrne, B. Khatri, et al., Langmuir 20, 9299 (2004).

    Article  CAS  Google Scholar 

  20. B. S. Khatry, PhD Thesis (Univ. Leeds, Great Britain, 2006).

  21. K. A. Walther, J. Brujie, H. B. Li, and J. M. Fernandez, Biophys. J. 90, 3806 (2006).

    Article  CAS  Google Scholar 

  22. I. Neelov, D. Adolf, M. Ratner, et al., Macromol. Symp. 237, 81 (2006).

    Article  CAS  Google Scholar 

  23. I. Neelov, D. Adolf, T. McLeish, and E. Paci, Biophys. J. 91, 3579 (2006).

    Article  CAS  Google Scholar 

  24. I. Neelov, D. Adolf, and T. McLeish, Lect. Notes Comput. Sci. 3980, 711 (2006).

    Article  Google Scholar 

  25. I. Neelov, D. Adolf, and T. McLeish, Macromol. Symp. 252, 140 (2007).

    Article  CAS  Google Scholar 

  26. S. Chandrasekhar, Stochastic Problems in Physics and Astronomy (Rev. Mod. Phys. 15, 1 (1943); Inostrannaya Literatura, Moscow, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Markelov.

Additional information

Original Russian Text © D.A. Markelov, I.M. Neelov, A.I. Neelov, Yu.Ya. Gotlib, A.A. Darinskii, 2009, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2009, Vol. 51, No. 8, pp. 1498–1515.

This work was supported by the Russian Foundation for Basic Research (project nos. 08-03-00150 and 08-03-00565); the federal target program Integration; the Division of Chemistry and Materials Sciences, Russian Academy of Sciences, under the program Development and Study of Macromolecules and Mac-romolecular Structures of New Generations; INTAS (grant no. 05-1000004-7747); and the EPSRC, EP/C528336/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markelov, D.A., Neelov, I.M., Neelov, A.I. et al. The theory of viscoelastic characteristics of a highly stretched macromolecule in single molecule AFM. Polym. Sci. Ser. A 51, 940–956 (2009). https://doi.org/10.1134/S0965545X09080148

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X09080148

Keywords

Navigation