Skip to main content

Mixed micelles based on cationic and anionic amphiphilic diblock copolymers containing identical hydrophobic blocks


Through the use of the methods of turbidimetry, UV spectrophotometry, fluorescence spectroscopy, dynamic light scattering, and ultracentrifugation, micelle formation is studied for cationic (polysty-rene-poly-N-ethyl-4-vinylpyridium bromide) and anionic (polystyrene-sodium polyacrylate) diblock copolymers containing identical polystyrene blocks in dilute aqueous saline solutions. Mixing of aqueous dispersions of individual micelles is accompanied by the formation of only insoluble products, which likely are intermicellar interpolyelectrolyte complexes. At the same time, mixing of diblock copolymers in a nonselective solvent and its subsequent gradient replacement with water during suppressed interpolyelectrolyte interactions yields mixed diblock copolymer micelles, which are found to be dispersionally stable in an excess of charged units of any polymer component. The micelles are composed of an insoluble polystyrene core and a mixed interpolyelectrolyte corona, and their hydrodynamic characteristics are controlled by the ratio of charged units in the mixed diblock copolymers. The mixed micelles are found to be able to interact with the macromolecules of a homopolyelectrolyte, sodium poly(styrene sulfonate), in aqueous solutions and form ternary complexes. In this case, depending on the composition of the mixed micelles, ternary complexes can be dispersionally stable or can aggregate and precipitate.

This is a preview of subscription content, access via your institution.


  1. 1.

    Amphiphilic Block Copolymers: Self-Assembly and Applications, Ed. by P. Alexandridis and B. Lindman (Elsevier, Amsterdam, 2000).

    Google Scholar 

  2. 2.

    F. Liu and A. Eisenberg, J. Am. Chem. Soc. 125, 15059 (2003).

    Article  CAS  Google Scholar 

  3. 3.

    V. Sfika, C. Tsitsilianis, A. Kiriy, et al., Macromolecules 37, 9551 (2004).

    Article  CAS  Google Scholar 

  4. 4.

    M. Stepanek, K. Podhajecka, E. Tesarova, et al., Langmuir 17, 4240 (2001).

    Article  CAS  Google Scholar 

  5. 5.

    K. Podhajecka, M. Stepanek, K. Prochazka, and W. Brown, Langmuir 17, 4245 (2001).

    Article  CAS  Google Scholar 

  6. 6.

    L. Luo and A. Eisenberg, Angew. Chem., Int. Ed. Engl. 41, 1001 (2002).

    Article  CAS  Google Scholar 

  7. 7.

    P. S. Chelushkin, E. A. Lysenko, T. K. Bronich, et al., J. Phys. Chem., B 111, 8419 (2007).

    Google Scholar 

  8. 8.

    X. F. Zhong, S. K. Varshney, and A. Eisenberg, Macromolecules 25, 7160 (1992).

    Article  CAS  Google Scholar 

  9. 9.

    M. Adamczyk, L. Fino, J. R. Fishpaugh, et al., Bioconjug. Chem. 5, 459 (1994).

    Article  CAS  Google Scholar 

  10. 10.

    M. Tian, A. Qin, C. Ramireddy, et al., Langmuir 9, 1741 (1993).

    Article  CAS  Google Scholar 

  11. 11.

    V. A. Kabanov, Usp. Khim. 74(1), 5 (2005).

    Google Scholar 

  12. 12.

    R. Erhardt, A. Boker, H. Zettl, et al., Macromolecules 34, 1069 (2001).

    Article  CAS  Google Scholar 

  13. 13.

    P. S. Chelushkin, E. A. Lysenko, T. K. Bronich, et al., Polymer Science, Ser. A 46, 485 (2004) [Vysokomol. Soedin., Ser. A 46, 799 (2004)].

    Google Scholar 

  14. 14.

    D. V. Pergushov, E. V. Remizova, M. Gradzielski, et al., Polymer 45, 367 (2004).

    Article  CAS  Google Scholar 

  15. 15.

    N. K. Nefedov, T. G. Ermakova, V. A. Kasaikin, et al., Vysokomol. Soedin., Ser. A 27, 1496 (1985).

    CAS  Google Scholar 

  16. 16.

    V. A. Izumrudov, T. K. Bronich, M. P. Novikova, et al., Vysokomol. Soedin., Ser. A 24, 339 (1982).

    CAS  Google Scholar 

  17. 17.

    Zh. G. Gulyaeva, M. F. Zansokhova, E. F. Razvodovskii, et al., Vysokomol. Soedin., Ser. A 25, 1238 (1983).

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. A. Lysenko.

Additional information

Original Russian Text © E.A. Lysenko, A.N. Trusov, P.S. Chelushkin, T.K. Bronich, A.V. Kabanov, A.B. Zezin, 2009, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2009, Vol. 51, No. 6, pp. 929–939.

This study was supported by the Russian Foundation for Basic Research, project nos. 06-03-32964 and 06-03-90153-NNF_a; the US National Science Foundation, grant DMR-0513699; and a grant for State Support of Leading Scientific Schools (NSh-168.2008.3).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lysenko, E.A., Trusov, A.N., Chelushkin, P.S. et al. Mixed micelles based on cationic and anionic amphiphilic diblock copolymers containing identical hydrophobic blocks. Polym. Sci. Ser. A 51, 606–615 (2009).

Download citation


  • Block Copolymer
  • Polymer Science Series
  • Mixed Micelle
  • Diblock Copolymer
  • Hydrodynamic Characteristic