Skip to main content
Log in

Aggregation of dextran hydrophobically modified by sterically hindered phenols

  • Solutions
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The process of aggregation of conjugates of dextran hydrophobically modified by sterically hindered phenols in an aqueous medium was studied by dynamic light scattering, transmission electron microscopy, atomic force microscopy, and fluorescent spectroscopy. It was found that, in solutions of dextran and related conjugates, individual molecules and their aggregates are present. The concentration, size, and shape of aggregates, as well as aggregation number, are determined by the degree of substitution of glycoside groups of dextran. It was shown that the critical concentration of conjugate aggregation decreases as the degree of substitution of dextran molecules increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stimuli-Responsive Water Soluble and Amphiphilic Polymers, Ed. by C. L. McCormick (American Chemical Society, New York, 2001).

    Google Scholar 

  2. K. Akiyoshi, S. Deguchi, N. Moriguchi, et al., Macromolecules 26, 3062 (1993).

    Article  CAS  Google Scholar 

  3. K. Akiyoshi, S. Deguchi, H. Tajima, et al., Macromolecules 30, 857 (1997).

    Article  CAS  Google Scholar 

  4. K. Akiyoshi and J. Sunamoto, Supramol. Sci. 3, 157 (1996).

    Article  CAS  Google Scholar 

  5. K. Kuroda, K. Fujimoto, J. Sunamoto, and K. Akiyoshi, Langmuir 18, 3780 (2002).

    Article  CAS  Google Scholar 

  6. A. Fischer, M. C. Houzelle, P. Hubert, et al., Langmuir 14, 4482 (1998).

    Article  CAS  Google Scholar 

  7. M. C. Miralles-Houzelle, P. Hubert, and E. Dellacherie, Langmuir 17, 1384 (2001).

    Article  CAS  Google Scholar 

  8. M. M. Amiji, Carbohydr. Polym. 26, 211 (1995).

    Article  CAS  Google Scholar 

  9. O. E. Philippova, E. V. Volkov, N. L. Sitnikova, et al., Biomacromolecules 2, 483 (2001).

    Article  CAS  Google Scholar 

  10. E. V. Volkov, O. E. Filippova, V. A. Smirnov, et al., in Proceedings of X All-Russia Conference “Structure and Dynamics of Molecular Systems”, Yal’chik, Russia, 2003, p. 234.

  11. C. Esquenet and E. Buhler, Macromolecules 34, 5287 (2001).

    Article  CAS  Google Scholar 

  12. C. Esquenet, P. Terech, F. Boue, and E. Buhler, Langmuir 20, 3583 (2004).

    Article  CAS  Google Scholar 

  13. A. L. Kjoniksen, B. Nystrom, C. Iversen, et al., Langmuir 13, 4948 (1997).

    Article  CAS  Google Scholar 

  14. A. L. Kjoniksen, C. Iversen, B. Nystrom, et al., Macromolecules 31, 8142 (1998).

    Article  CAS  Google Scholar 

  15. K. Y. Lee, W. H. Jo, I. C. Kwon, et al., Macromolecules 31, 378 (1998).

    Article  CAS  Google Scholar 

  16. K. Y. Lee, W. H. Jo, I. C. Kwon, et al., Langmuir 14, 2329 (1998).

    Article  CAS  Google Scholar 

  17. M. Nichifor, M. C. Stanciua, and X. X. Zhu, React. Funct. Polym. 59, 141 (2004).

    Article  CAS  Google Scholar 

  18. M. Nichifor, A. Lopes, A. Carpov, and E. Melo, Macromolecules 32, 7078 (1999).

    Article  CAS  Google Scholar 

  19. M. Nichifor, S. Lopes, M. Bastos, and A. Lopes, J. Phys. Chem., B 108, 16463 (2004).

    Google Scholar 

  20. M. Nichifor, X. X. Zhu, D. Cristea, and A. Carpov, J. Phys. Chem., B 105, 2314 (2001).

    Article  CAS  Google Scholar 

  21. Z. Pelton and R. Wagberg, Colloid Polym. Sci. 276, 476 (1998).

    Article  Google Scholar 

  22. N. Domnina, D. Aref’ev, E. Komarova, and A. Bilibin, Macromol. Symp. 144, 339 (1999).

    CAS  Google Scholar 

  23. D. Aref’ev, N. Domnina, E. Komarova, and A. Bilibin, Eur. Polym. J. 35, 279 (1999).

    Article  Google Scholar 

  24. O. Yu. Sergeeva, D. V. Aref’ev, N. S. Domnina, and E. A. Komarova, Zh. Prikl. Khim. (S.-Peterburg) 78, 962 (2005).

    Google Scholar 

  25. G. Scott, Antioxidants in Science, Technology, Medicine and Nutrition (Albion, Chichester, 1997).

    Google Scholar 

  26. N. S. Domnina, O. Yu. Sergeeva, N. K. Merkulova, et al., Psikhofarmakol. Klin. Narkol. 2, 391 (2002).

    Google Scholar 

  27. N. S. Domnina, R. S. Khrustaleva, D. V. Aref’ev, et al., RF Patent No. 2 273 483 (2006).

  28. A. D. Virnik, K. P. Khomyakov, and I. F. Skokova, Usp. Khim. 44, 1280 (1975).

    CAS  Google Scholar 

  29. L. A. Cohen and W. M. Jones, J. Am. Chem. Soc. 84, 1629 (1962).

    Article  CAS  Google Scholar 

  30. A. J. Huber, Appl. Polym. Symp. 48, 95 (1991).

    Article  CAS  Google Scholar 

  31. R. L. Cleland, Biopolymers 9, 881 (1970).

    Google Scholar 

  32. G. M. Pavlov, E. V. Korneeva, and N. P. Yevlampieva, Int. J. Biol. Macromol. 16, 318 (1994).

    Article  CAS  Google Scholar 

  33. E. J. Nordmeier, J. Phys. Chem. 97, 5770 (1993).

    Article  CAS  Google Scholar 

  34. V. N. Tsvetkov, Rigid-Chain Polymers (Nauka, Leningrad, 1986; Plenum, New York, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Domnina.

Additional information

Original Russian Text © S.K. Filippov, A.S. Komolov, O.Yu. Sergeeva, A.S. Olifirenko, S.B. Lesnichin, E.A. Komarova, B.A. Loginov, N.S. Domnina, A.V. Lezov, 2009, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2009, Vol. 51, No. 2, pp. 209–217.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, S.K., Komolov, A.S., Sergeeva, O.Y. et al. Aggregation of dextran hydrophobically modified by sterically hindered phenols. Polym. Sci. Ser. A 51, 161–167 (2009). https://doi.org/10.1134/S0965545X09020035

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X09020035

Keywords

Navigation