Skip to main content
Log in

Characterizing and modeling the tensile deformation of polyethylene: The temperature and crystallinity dependences

  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

For various polyethylenes at ambient and elevated temperatures, tensile deformation was characterized by measurements of true stress-true strain curves at constant strain rates, the determination of the elastic and plastic part of strains, and registrations of the stress relaxation at fixed strains. Some peculiar features show up: (i) The yield point is associated with a drop in the stiffness rather than an onset of plastic flow. (ii) The elasticity reaches a plateau at a temperature and crystallinity invariant critical strain (ɛ H ≈ 0.6). (iii) Moduli as derived from the stretching curve can be strongly modified by viscous forces. A recently introduced model treats the stress as arising from three contributions, rubberlike forces originating from the stretched network of entangled amorphous chains, forces transmitted by the skeleton of crystallites, and viscous forces described by Eyring’s equation. Adjustment of the measured data to the model provides a decomposition of the stress in the three parts and thus allows an analysis of the effects of temperature and crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hiss, S. Hobeika, C. Lynn, and G. Strobl, Macromolecules 32, 4390 (1999).

    Article  CAS  Google Scholar 

  2. S. Hobeika, Y. Men, and G. Strobl, Macromolecules 33, 1827 (2000).

    Article  CAS  Google Scholar 

  3. M. Al-Hussein and G. Strobl, Macromolecules 35, 8515 (2002).

    Article  CAS  Google Scholar 

  4. Y. Men and G. Strobl, Macromolecules 36, 1889 (2003).

    Article  CAS  Google Scholar 

  5. K. Hong, A. Rastogi, and G. Strobl, Macromolecules 37, 10165 (2004).

    Article  CAS  Google Scholar 

  6. K. Hong, A. Rastogi, and G. Strobl, Macromolecules 37, 10174 (2004).

    Article  CAS  Google Scholar 

  7. C. G’Sell, J. M. Hiver, A. Dahoun, and A. Souahi, J. Mater. Sci. 27, 5031 (1992).

    Article  Google Scholar 

  8. T. A. Tervoort, E. T. J. Klompen, and L. E. Govaert, J. Rheol. (N. Y.) 40, 779 (1996).

    Article  CAS  Google Scholar 

  9. L. E. Govaert, P. H. M. Timmermans, and W. A. M. Brekelmans, J. Eng. Mater. Technol. 122, 177 (2000).

    Article  CAS  Google Scholar 

  10. R. N. Haward and G. Thackray, Proc. R. Soc. London, A 302, 453 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Strobl.

Additional information

Published in Russian in Vysokomolekulyarnye Soedineniya, Ser. A, 2008, Vol. 50, No. 5, pp. 760–772.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, K., Strobl, G. Characterizing and modeling the tensile deformation of polyethylene: The temperature and crystallinity dependences. Polym. Sci. Ser. A 50, 483–493 (2008). https://doi.org/10.1134/S0965545X08050027

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X08050027

Keywords

Navigation