Skip to main content
Log in

Monte Carlo simulation of the interchain exchange reaction in a blend of incompatible polymers

  • Theory
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The interchain exchange reaction in a blend composed of two contacting layers of incompatible A and B homopolymers was simulated by means of the dynamic off-lattice Monte Carlo method. The evolution of local molecular-mass and block mass distributions, depending on the effective temperature and the reaction rate, was studied for the first time. It was shown that the components interpenetrate as the copolymer forms in the interphase layer and the average block length decreases below a certain, temperature-dependent value. The state of dynamic equilibrium, whose characteristics are determined mainly by temperature, is established in the system. The time of establishment of equilibrium and the intensity of compatibilization at the early steps of the process are controlled by the rate of the reaction. The results of the study allow the contribution of the reaction to the interchange processes to be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Transreactions in Condensation Polymers, Ed. by S. Fakirov (Wiley, Weinheim, 1999).

  2. E. A. Rozenberg, V. I. Irzhak, and N. S. Enikolopyan, Interchain Exchange in Polymers (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  3. A. D. Litmanovich, N. A. Platé, and Y. V. Kudryavtsev, Prog. Polym. Sci. 27, 915 (2002).

    Article  CAS  Google Scholar 

  4. N. A. Platé, A. D. Litmanovich, and Ya. V. Kudryavtsev, Polymer Science, Ser. A 46, 1208 (2004) [Vysokomol. Soedin., Ser. A 46, 1834 (2004)].

    Google Scholar 

  5. H. Tanaka, T. Suzuki, T. Hayashi, and T. Nishi, Macromolecules 25, 4453 (1992).

    Article  CAS  Google Scholar 

  6. M. Rabeony, D. T. Hseih, R. T. Garner, and D. G. Peiffer, J. Chem. Phys. 97, 4505 (1992).

    Article  CAS  Google Scholar 

  7. H. J. Bang, J. K. Lee, and K. H. Lee, J. Polym. Sci., Part B: Polym. Phys. 38, 2625 (2000).

    Article  CAS  Google Scholar 

  8. O. A. Kononenko, Ya. V. Kudryavtsev, and A. D. Litmanovich, Polymer Science, Ser. A 44, 911 (2002) [Vysokomol. Soedin., Ser. A 44, 1412 (2002)].

    Google Scholar 

  9. Y. V. Kudryavtsev, Macromol. Theory Simul. 10, 355 (2001).

    Article  CAS  Google Scholar 

  10. Y. V. Kudryavtsev and E. N. Govorun, e-Polymers, No. 063 (2003).

  11. W. H. Jo, J. G. Kim, S. S. Jang, et al., Macromolecules 32, 1679 (1999).

    Article  CAS  Google Scholar 

  12. J. H. Youk and W. H. Jo, J. Polym. Sci., Part B: Polym. Phys. 39, 1337 (2001).

    Article  CAS  Google Scholar 

  13. W. J. Bae, W. H. Jo, and Y. H. Park, Macromol. Res. 10, 145 (2002).

    Article  CAS  Google Scholar 

  14. J. H. Youk and W. H. Jo, Macromolecules 34, 7530 (2001).

    Article  CAS  Google Scholar 

  15. X. He, J. Nagel, D. Lehmann, and G. Heinrich, Macromol. Theory Simul. 14, 305 (2005).

    Article  CAS  Google Scholar 

  16. I. Carmesin and K. Kremer, Macromolecules 21, 2819 (1988).

    Article  CAS  Google Scholar 

  17. H. Deutsch and R. Dickman, J. Chem. Phys. 93, 8983 (1990).

    Article  CAS  Google Scholar 

  18. K. Binder and A. Milchev, J. Comput.-Aided Mater. Des. 9, 33 (2002).

    Article  CAS  Google Scholar 

  19. A. Milchev, W. Paul, and K. Binder, J. Chem. Phys. 99, 4786 (1993).

    Article  CAS  Google Scholar 

  20. D. E. Galperin, V. A. Ivanov, M. A. Mazo, and A. R. Khokhlov, Polymer Science, Ser. A 47, 61 (2005) [Vysokomol. Soedin., Ser. A 47, 78 (2005)].

    Google Scholar 

  21. M. Allen and D. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  22. J. P. Bouchaud and M. E. Cates, J. Phys. II 3, 1171 (1993).

    CAS  Google Scholar 

  23. A. N. Semenov, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 3076 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Chertovich, D.V. Guseva, Ya.V. Kudryavtsev, A.D. Litmanovich, 2008, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2008, Vol. 50, No. 4, pp. 686–698.

This work was supported by the Russian Foundation for Basic Research, project no. 07-03-00988; the President of the Russian Federation Programs for Support of Young Scientists (grant MD-4684.2006.3) and Leading Scientific Schools (grant NSh-4676.2006.3); NWO, grant no. 047.019.003; and the National Science Promotion Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chertovich, A.V., Guseva, D.V., Kudryavtsev, Y.V. et al. Monte Carlo simulation of the interchain exchange reaction in a blend of incompatible polymers. Polym. Sci. Ser. A 50, 451–461 (2008). https://doi.org/10.1134/S0965545X08040147

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X08040147

Keywords

Navigation