Skip to main content
Log in

Theory of self-oscillating neck propagation in polymers

  • Theory
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The theories describing self-oscillating neck propagation in polymers are compared with the experimental data. For the description of self-oscillating neck propagation in PET, the system of equations is proposed. This theory is based on the Toda equation for the thermal conductivity in the incoming flow, which takes into account heat release into the environment. Numerical solution demonstrates the existence of self-excited oscillations in the ascending branch of the strain rate dependence of postyield stress, and this result conflicts with the Davidenkov criterion but fully agrees with the experimental evidence. The Barenblatt model takes into account the limited compliance of the samples and provides further development of the Davidenkov model. Self-oscillating neck propagation in polymers is shown to be qualitatively different from relaxation oscillations (for example, periodic slippage of a load along a table) and from oscillations described by the first-order kinetic equations. Hence, the instability of the systems described by the equation of thermal conductivity and the system of kinetic equations appears to be principally different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Portevin and F. LeChatelier, Trans. Am. Soc. Steel Treat. 5, 457 (1924).

    CAS  Google Scholar 

  2. D. C. Hookway, J. Text. Inst. 49, 292 (1958).

    Article  Google Scholar 

  3. W. Roth and R. Schroth, Faserforsch. Textiltech. 11, 312 (1960).

    CAS  Google Scholar 

  4. A. S. Kechek’yan, G. P. Andrianova, and V. A. Kargin, Vysokomol. Soedin., Ser. A 12, 2424 (1970).

    Google Scholar 

  5. G. P. Andrianova, Yu. P. Popov, and B. A. Arutyunov, Vysokomol. Soedin., Ser. A 18, 2311 (1976).

    CAS  Google Scholar 

  6. Y. K. Godovsky, Thermophysical Properties of Polymers (Springer, Berlin, 1993), p. 227.

    Google Scholar 

  7. S. L. Bazhenov, Yu. A. Rodionova, A. S. Kechek’yan, and A. K. Rogozinskii, Polymer Science, Ser. A 47, 692 (2005) [Vysokomol. Soedin., Ser. A 47, 1131 (2005)].

    Google Scholar 

  8. V. A. Mikhel’son, Collected Works (Novyi Agronom, Moscow, 1930) [in Russian].

    Google Scholar 

  9. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980).

    Google Scholar 

  10. N. N. Davidenkov, Fiz. Tverd. Tela (Leningrad) 3, 2458 (1961).

    Google Scholar 

  11. G. I. Barenblatt, Mekh. Tverd. Tela, No. 5, 121 (1970).

  12. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Vibrations (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  13. S. L. Bazhenov and A. S. Kechek’yan, Polymer Science, Ser. A 43, 52 (2001) [Vysokomol. Soedin., Ser. A 43, 63 (2001)].

    Google Scholar 

  14. S. L. Bazhenov and A. S. Kechek’yan, Polymer Science, Ser. A 44, 386 (2002) [Vysokomol. Soedin., Ser. A 44, 629 (2002)].

    Google Scholar 

  15. J. Karger-Kocsis, O. I. Benevolenski, and E. J. Moskala, J. Mater. Sci. 36, 3365 (2001).

    Article  CAS  Google Scholar 

  16. A. Toda, Polymer 35, 3638 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Bazhenov.

Additional information

Original Russian Text © S.L. Bazhenov, E.P. Koval’chuk, 2008, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2008, Vol. 50, No. 3, pp. 501–509.

This work was supported by the Russian Foundation for Basic Research, project no. 04-03-32764.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhenov, S.L., Koval’chuk, E.P. Theory of self-oscillating neck propagation in polymers. Polym. Sci. Ser. A 50, 328–334 (2008). https://doi.org/10.1134/S0965545X08030115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X08030115

Keywords

Navigation