Effect of formation of ion pairs on the stability of stoichiometric block ionomer complexes

Abstract

The dependences of the aggregation number and the size of micelles formed as a result of self-assembly in dilute solutions of block ionomers and oppositely charged polyelectrolytes on the degree of ionization of polyions, as well as on solvent quality and polarity, were theoretically analyzed. The micelle core is a polyelectrolyte complex and the corona is formed by hydrophilic nonionic blocks of the block ionomers. To describe the polyelectrolyte complex, a model that allows for the formation of ion pairs between oppositely charged groups on polymer chains was proposed. In terms of the Lifshitz approach to the description of polymer globules, the equilibrium concentration of the polymer in the complex and its surface tension as a function of the degree of ionization of polyelectrolyte chains and solvent polarity were found. It was shown that the proportion of ion pairs is small in a strongly polar complex and the polyelectrolyte complex is formed mainly as a result of attraction due to charge density correlation in the complex. As the solvent polarity increases, the proportion of ion pairs increases. In a solvent with low polarity, the formation of ion pairs that act as physical crosslinks between oppositely charged polyions is a driving force of complexation. With an increase in the number of ion pairs, the surface tension of polyelectrolyte complexes that form the micelle core of block ionomer complexes increases, thus leading to a considerable increase in the size of micelles.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. V. Kabanov, T. K. Bronich, V. A. Kabanov, et al., Macromolecules 29, 6797 (1996).

    Article  CAS  Google Scholar 

  2. 2.

    A. V. Kabanov, S. V. Vinogradov, Yu. G. Suzdaltseva, and V. Yu. Alakhov, Bioconjugate Chem. 6, 639 (1995).

    Article  CAS  Google Scholar 

  3. 3.

    A. Harada and K. Kataoka, Macromolecules 31, 288 (1998).

    Article  CAS  Google Scholar 

  4. 4.

    A. Harada and K. Kataoka, Macromolecules 25, 4249 (1995).

    Google Scholar 

  5. 5.

    J.-F. Gohy, S. K. Varshney, and R. Jerome, Macromolecules 34, 3361 (2001).

    Article  CAS  Google Scholar 

  6. 6.

    T. K. Bronich, T. Cherry, S. V. Vinogradov, et al., Langmuir 14, 6101 (1998).

    Article  CAS  Google Scholar 

  7. 7.

    A. V. Kabanov, T. K. Bronich, V. A. Kabanov, et al., J. Am. Chem. Soc. 120, 9941 (1998).

    Article  CAS  Google Scholar 

  8. 8.

    A. B. Zezin and V. A. Kabanov, Usp. Khim. 51, 1447 (1982).

    CAS  Google Scholar 

  9. 9.

    E. Yu. Kramarenko, A. R. Khokhlov, and P. Reineker, J. Chem. Phys. 119, 4945 (2003).

    Article  CAS  Google Scholar 

  10. 10.

    V. Yu. Borue and I. Ya. Erukhimovich, Macromolecules 23, 3625 (1990).

    Article  CAS  Google Scholar 

  11. 11.

    I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 55, 2408 (1968).

    Google Scholar 

  12. 12.

    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  13. 13.

    E. Yu. Kramarenko, A. R. Khokhlov, and P. Reineker, J. Chem. Phys. 125, 194902 (2006).

  14. 14.

    E. Yu. Kramarenko, I. Ya. Erukhimovich, and A. R. Khokhlov, Macromol. Theory Simul. 11, 462 (2002).

    Article  CAS  Google Scholar 

  15. 15.

    E. Yu. Kramarenko, I. Ya. Erukhimovich, and A. R. Khokhlov, Polymer Science, Ser. A 46, 974 (2004) [Vysokomol. Soedin., Ser. A 46, 1570 (2004)].

    Google Scholar 

  16. 16.

    E. B. Zhulina and T. M. Birshtein, Vysokomol. Soedin., Ser. A 27, 511 (1985).

    CAS  Google Scholar 

  17. 17.

    T. M. Birshtein and E. B. Zhulina, Polymer 30, 170 (1989).

    Article  CAS  Google Scholar 

  18. 18.

    P. J. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, New York, 1953).

    Google Scholar 

  19. 19.

    L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1976; Pergamon Press, Oxford, 1980), Vol. V, Part I.

    Google Scholar 

  20. 20.

    A. N. Kudlai and I. Ya. Erukhimovich, Polymer Science, Ser. A 43, 159 (2001) [Vysokomol. Soedin., Ser. A 43, 282 (2001)].

    Google Scholar 

  21. 21.

    A. V. Ermoshkin and I. Ya. Erukhimovich, Polymer Science, Ser. A 42, 84 (2000) [Vysokomol. Soedin., Ser. A 42, 102 (2000)].

    Google Scholar 

  22. 22.

    A. N. Semenov and M. Rubinstein, Macromolecules 31, 1373 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Kramarenko.

Additional information

Original Russian Text © E.Yu. Kramarenko, A.R. Khokhlov, 2007, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2007, Vol. 49, No. 9, pp. 1712–1724.

This work was supported by the Russian Foundation for Basic Research, project no. 06-03-90153.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kramarenko, E.Y., Khokhlov, A.R. Effect of formation of ion pairs on the stability of stoichiometric block ionomer complexes. Polym. Sci. Ser. A 49, 1053–1063 (2007). https://doi.org/10.1134/S0965545X07090131

Download citation

Keywords

  • Block Copolymer
  • Polymer Science Series
  • Diblock Copolymer
  • Aggregation Number
  • Polyelectrolyte Complex